

pyglet Documentation

Attention

This documentation is for the pyglet 2.1 series, which has a few small API
changes from the 2.0 series. Previous documentation can be found at:
2.0 maintenance [https://pyglet.readthedocs.io/en/pyglet-2.0-maintenance/].
Documentation for the 1.5 series, which is the last to support legacy OpenGL,
can be found here:
1.5 maintenance [https://pyglet.readthedocs.io/en/pyglet-1.5-maintenance/].

pyglet is a cross-platform windowing and multimedia library for Python,
intended for developing games and other visually rich applications. It supports
windowing, user interface event handling, game controllers and joysticks,
OpenGL graphics, loading images and videos, and playing sounds and music.
pyglet works on Windows, macOS and Linux.

Some of the features of pyglet are:

	No external dependencies or installation requirements. For most
application and game requirements, pyglet needs nothing else besides Python,
simplifying distribution and installation.

	Take advantage of multiple windows and multi-monitor desktops. pyglet
allows you to use as many windows as you need, and is fully aware of
multi-monitor setups for use with fullscreen games and applications.

	Load images, sound, music and video in almost any format. pyglet has
built-in support for common audio and image formats, and can optionally use
ffmpeg to load almost any other compressed audio or video files.

	pyglet is provided under the BSD open-source license, allowing you to
use it for both commercial and other open-source projects with very little
restriction.

Please join our Discord [https://discord.gg/QXyegWe] server, or join us on the mailing list [http://groups.google.com/group/pyglet-users]!

If this is your first time reading about pyglet, we suggest you start at
Writing a pyglet application.
If you are migrating from an older version of pyglet, please read through
Migrating from pyglet 2.0.

Programming Guide

	Installation
	Running the examples

	Writing a pyglet application
	Hello, World

	Image viewer

	Handling mouse and keyboard events

	Playing sounds and music

	Where to next?

	Windowing
	Creating a window
	OpenGL Context configuration

	Fullscreen windows

	Size and position

	Appearance
	Window style

	Caption

	Icon

	Visibility

	Subclassing Window

	Windows and OpenGL contexts
	Double-buffering

	Vertical retrace synchronisation

	Keyboard input
	Keyboard Focus Conventions

	Keyboard events
	Defined key symbols

	Modifiers

	User-defined key symbols

	Remembering key state

	Text Input and Motion Events
	Motion events

	Keyboard exclusivity

	Mouse input
	Mouse events

	Changing the mouse cursor

	Mouse exclusivity

	Controller & Joystick input
	Using Controllers
	Rumble

	ControllerManager

	Using Joysticks

	Using the Apple Remote

	Low-level Devices

	Drawing Shapes
	Creating a Shape
	Anchor Points

	Advanced Operation

	Images and Sprites
	Loading an image

	Displaying images
	Sprites

	Simple image blitting

	Supported image decoders

	Supported image formats

	Working with images

	The AbstractImage hierarchy

	Accessing or providing pixel data
	Performance concerns

	Image sequences and atlases
	Image grids

	3D textures

	Texture bins and atlases

	Animations

	Framebuffers

	OpenGL imaging
	Texture dimensions

	Texture internal format

	Texture filtering

	Saving an image

	Playing Sound and Video
	Audio drivers
	Choosing the audio driver

	XAudio2

	DirectSound

	OpenAL

	PulseAudio

	Supported media types
	Windows Media Foundation

	GStreamer

	CoreAudio

	PyOgg

	FFmpeg

	FFmpeg installation

	Loading media

	Audio Synthesis

	Simple audio playback

	Controlling playback

	Handling playback events

	Gapless playback

	Incorporating video

	Positional audio

	Ticking the clock

	Displaying text
	Simple text rendering

	The document/layout model
	Documents

	Layouts

	Formatted text
	Character styles

	Paragraph styles

	Attributed text

	HTML

	Custom elements

	User-editable text

	Loading system fonts

	Font sizes
	Font resolution

	Determining font size

	Loading custom fonts
	Supported font formats

	OpenGL font considerations
	Context affinity

	Blend state

	Application resources
	Loading resources
	Resource locations

	Specifying the resource path

	Multiple loaders

	Saving user preferences and data

	Shaders and Rendering
	Working with Shaders
	Creating a Shader Program

	Uniforms

	Uniform Buffer Objects (Uniform Blocks)

	Creating Vertex Lists

	Batched rendering
	Setting the OpenGL state

	Shader state

	Hierarchical state

	Drawing order

	Visibility

	Batches and groups in other modules

	Event dispatching & handling
	Setting event handlers
	The event decorator

	Stacking event handlers

	Creating your own event dispatcher
	Implementing the Observer pattern

	Simple Widgets & GUI
	Creating a Widget

	Frame objects

	Custom widgets

	Keeping track of time
	Calling functions periodically

	Sprite movement techniques

	Displaying the frame rate

	User-defined clocks

	Creating an OpenGL context
	Displays, screens, configs and contexts
	Contexts and configs

	Displays

	Screens

	OpenGL configuration options
	The default configuration

	Simple context configuration

	Selecting the best configuration

	Sharing objects between contexts

	The OpenGL interface
	Using OpenGL

	Resizing the window

	Error checking

	Using extension functions

	Using multiple windows

	AGL, GLX and WGL

	Matrix and Vector Math
	Creating a Matrix

	Matrix Multiplication

	Helper Methods

	The application event loop
	Customising the event loop
	Event loop events

	Overriding the default idle policy

	Creating a Custom Event Loop

	In-depth game example
	Basic graphics
	Setting up

	Getting a window

	Loading and displaying an image

	Centering the images

	Initializing objects

	Making the labels

	Drawing the labels

	Making the player and asteroid sprites

	Basic motion
	Drawing with batches

	Displaying little ship icons

	Making things move

	Writing the game update function

	Calling the update() function

	Writing the Player class

	Integrating the player class

	Giving the player something to do
	Simplifying player input

	Adding an engine flame

	Loading the flame image

	Creating and drawing the flame

	Cleaning up after death

	Checking For collisions

	Checking all object pairs

	Implementing the collision functions

	Collision response
	Adding objects during play

	Tweaking the game loop

	Putting the attribute in PhysicalObject

	Adding bullets

	Firing bullets

	Customizing collision behavior

	Customizing bullet collisions

	Making asteroids explode

	Writing the asteroid class

	Next steps

	Runtime Options
	options

	Environment settings

	Debugging tools
	Debugging OpenGL
	Error checking

	Tracing

	Tracing execution

	Platform-specific debugging
	Linux

	Windows

	Migrating from pyglet 2.0
	Window “HiDPI” support

	Labels & Text Layouts

	Shapes

	Controllers

	Gui

	Math module

	Canvas module

API Reference

	pyglet

	pyglet.app
	Applications
	Events

	Classes
	EventLoop

	PlatformEventLoop

	Functions
	run()

	exit()

	Attributes
	event_loop

	platform_event_loop

	windows

	Exceptions
	AppException

	pyglet.clock
	Scheduling

	Using multiple clocks

	Clock
	Clock.__init__()

	Clock.call_scheduled_functions()

	Clock.get_frequency()

	Clock.get_sleep_time()

	Clock.schedule()

	Clock.schedule_interval()

	Clock.schedule_interval_for_duration()

	Clock.schedule_interval_soft()

	Clock.schedule_once()

	Clock.sleep()

	Clock.tick()

	Clock.unschedule()

	Clock.update_time()

	get_default()

	get_frequency()

	get_sleep_time()

	schedule()

	schedule_interval()

	schedule_interval_for_duration()

	schedule_interval_soft()

	schedule_once()

	set_default()

	tick()

	unschedule()

	pyglet.customtypes
	Buffer

	HorizontalAlign

	AnchorX

	AnchorY

	ContentVAlign

	pyglet.event
	Event types

	Attaching event handlers

	Event handler stack

	Dispatching events

	EventException

	EventDispatcher
	EventDispatcher.dispatch_event()

	EventDispatcher.event()

	EventDispatcher.pop_handlers()

	EventDispatcher.push_handlers()

	EventDispatcher.register_event_type()

	EventDispatcher.remove_handler()

	EventDispatcher.remove_handlers()

	EventDispatcher.set_handler()

	EventDispatcher.set_handlers()

	EventDispatcher.event_types

	pyglet.font
	add_directory()

	add_file()

	add_user_font()

	have_font()

	load()

	pyglet.font.user
	Scaling

	UserDefinedFontException

	UserDefinedFontBase
	UserDefinedFontBase.glyph_renderer_class

	UserDefinedFontBase.__init__()

	UserDefinedFontBase.enable_scaling()

	UserDefinedFontBase.name

	UserDefinedMappingFont
	UserDefinedMappingFont.__init__()

	UserDefinedMappingFont.enable_scaling()

	UserDefinedMappingFont.get_glyphs()

	get_scaled_user_font()

	pyglet.gl
	ConfigException

	ContextException

	current_context

	GLException
	GLException.__init__()

	GLException.__new__()

	ObjectSpace
	ObjectSpace.__init__()

	Config
	Config.__init__()

	Config.create_context()

	Config.get_gl_attributes()

	Config.is_complete()

	Config.match()

	Config.debug

	Config.forward_compatible

	Config.major_version

	Config.minor_version

	Config.opengl_api

	DisplayConfig
	DisplayConfig.__init__()

	DisplayConfig.create_context()

	DisplayConfig.is_complete()

	Context
	Context.__init__()

	Context.attach()

	Context.create_program()

	Context.delete_buffer()

	Context.delete_framebuffer()

	Context.delete_renderbuffer()

	Context.delete_shader()

	Context.delete_shader_program()

	Context.delete_texture()

	Context.delete_vao()

	Context.destroy()

	Context.detach()

	Context.get_info()

	Context.set_current()

	pyglet.graphics
	pyglet.graphics.allocation
	AllocatorMemoryException

	Allocator

	pyglet.graphics.shader
	ShaderException

	Attribute

	ComputeShaderProgram

	Shader

	ShaderProgram

	ShaderSource

	UniformBlock

	UniformBufferObject

	pyglet.graphics.vertexbuffer
	AbstractBuffer

	AttributeBufferObject

	BufferObject

	PersistentBufferObject

	pyglet.graphics.vertexdomain
	IndexedVertexDomain

	IndexedVertexList

	VertexDomain

	VertexList

	Batch
	Batch.__init__()

	Batch.draw()

	Batch.draw_subset()

	Batch.get_domain()

	Batch.invalidate()

	Batch.migrate()

	Group
	Group.__init__()

	Group.set_state()

	Group.set_state_recursive()

	Group.unset_state()

	Group.unset_state_recursive()

	Group.batches

	Group.order

	Group.visible

	ShaderGroup
	ShaderGroup.__init__()

	ShaderGroup.set_state()

	ShaderGroup.unset_state()

	TextureGroup
	TextureGroup.__init__()

	TextureGroup.set_state()

	draw()

	draw_indexed()

	get_default_batch()

	get_default_shader()

	pyglet.gui
	Classes
	WidgetBase

	PushButton

	ToggleButton

	Slider

	TextEntry

	pyglet.image
	pyglet.image.atlas
	AllocatorException

	Allocator

	TextureArrayBin

	TextureAtlas

	TextureBin

	pyglet.image.animation
	Animation

	AnimationFrame

	pyglet.image.buffer
	Framebuffer

	Renderbuffer

	get_max_color_attachments()

	Drawing images

	Texture access

	Pixel access

	Classes
	Images

	Image Sequences

	Patterns

	Data

	Other Classes

	Functions
	create()

	get_buffer_manager()

	load()

	load_animation()

	get_max_texture_size()

	Exceptions
	ImageException

	ImageEncodeException

	ImageDecodeException

	pyglet.info
	dump()

	dump_al()

	dump_ffmpeg()

	dump_gl()

	dump_glx()

	dump_media()

	dump_platform()

	dump_pyglet()

	dump_python()

	dump_window()

	dump_wintab()

	pyglet.input
	Classes
	ControllerManager

	Device

	Control

	RelativeAxis

	AbsoluteAxis

	Button

	Controller

	Joystick

	AppleRemote

	Tablet

	Functions
	get_apple_remote()

	get_devices()

	get_controllers()

	get_joysticks()

	get_tablets()

	Exceptions
	DeviceException

	DeviceOpenException

	DeviceExclusiveException

	pyglet.math
	Mat3
	Mat3.__new__()

	Mat3.rotate()

	Mat3.scale()

	Mat3.shear()

	Mat3.translate()

	Mat4
	Mat4.__new__()

	Mat4.column()

	Mat4.from_rotation()

	Mat4.from_scale()

	Mat4.from_translation()

	Mat4.look_at()

	Mat4.orthogonal_projection()

	Mat4.perspective_projection()

	Mat4.rotate()

	Mat4.row()

	Mat4.scale()

	Mat4.translate()

	Mat4.transpose()

	Quaternion
	Quaternion.conjugate()

	Quaternion.dot()

	Quaternion.from_mat3()

	Quaternion.from_mat4()

	Quaternion.normalize()

	Quaternion.to_mat3()

	Quaternion.to_mat4()

	Quaternion.mag

	Quaternion.w

	Quaternion.x

	Quaternion.y

	Quaternion.z

	Vec2
	Vec2.clamp()

	Vec2.distance()

	Vec2.dot()

	Vec2.from_heading()

	Vec2.from_magnitude()

	Vec2.from_polar()

	Vec2.index()

	Vec2.lerp()

	Vec2.limit()

	Vec2.normalize()

	Vec2.reflect()

	Vec2.rotate()

	Vec2.heading

	Vec2.mag

	Vec2.x

	Vec2.y

	Vec3
	Vec3.clamp()

	Vec3.cross()

	Vec3.distance()

	Vec3.dot()

	Vec3.from_magnitude()

	Vec3.index()

	Vec3.lerp()

	Vec3.limit()

	Vec3.normalize()

	Vec3.mag

	Vec3.x

	Vec3.y

	Vec3.z

	Vec4
	Vec4.clamp()

	Vec4.distance()

	Vec4.dot()

	Vec4.index()

	Vec4.lerp()

	Vec4.normalize()

	Vec4.w

	Vec4.x

	Vec4.y

	Vec4.z

	clamp()

	pyglet.media
	pyglet.media.synthesis
	ADSREnvelope

	FlatEnvelope

	LinearDecayEnvelope

	Sawtooth

	Silence

	Sine

	Square

	SynthesisSource

	TremoloEnvelope

	Triangle

	WhiteNoise

	composite_operator()

	noise_generator()

	pulse_generator()

	sawtooth_generator()

	silence_generator()

	sine_generator()

	sine_operator()

	triangle_generator()

	Classes
	Player

	PlayerGroup

	AudioFormat

	VideoFormat

	AudioData

	SourceInfo

	Source

	StreamingSource

	StaticSource

	StaticMemorySource

	AbstractListener

	MediaEvent

	Functions
	get_audio_driver()

	load()

	have_ffmpeg()

	Exceptions
	CannotSeekException

	MediaException

	MediaFormatException

	pyglet.resource
	Path format

	Functions
	reindex()

	file()

	location()

	add_font()

	image()

	animation()

	texture()

	media()

	model()

	shader()

	html()

	attributed()

	text()

	get_cached_image_names()

	get_cached_animation_names()

	get_texture_bins()

	get_cached_texture_names()

	Exceptions
	ResourceNotFoundException

	UndetectableShaderType

	pyglet.sprite
	Drawing multiple sprites

	Sprite
	Sprite.delete()

	Sprite.draw()

	Sprite.update()

	Sprite.on_animation_end()

	Sprite.batch

	Sprite.color

	Sprite.group

	Sprite.height

	Sprite.image

	Sprite.opacity

	Sprite.position

	Sprite.rotation

	Sprite.scale

	Sprite.scale_x

	Sprite.scale_y

	Sprite.visible

	Sprite.width

	Sprite.x

	Sprite.y

	Sprite.__init__()

	Sprite.__new__()

	SpriteGroup
	SpriteGroup.__init__()

	SpriteGroup.set_state()

	SpriteGroup.unset_state()

	pyglet.shapes
	ShapeBase
	ShapeBase.draw()

	ShapeBase.delete()

	ShapeBase.x

	ShapeBase.y

	ShapeBase.position

	ShapeBase.rotation

	ShapeBase.anchor_x

	ShapeBase.anchor_y

	ShapeBase.anchor_position

	ShapeBase.color

	ShapeBase.opacity

	ShapeBase.visible

	ShapeBase.group

	ShapeBase.batch

	ShapeBase.__init__()

	ShapeBase.__new__()

	Arc
	Arc.angle

	Arc.start_angle

	Arc.thickness

	Arc.__init__()

	Arc.__new__()

	BezierCurve
	BezierCurve.points

	BezierCurve.t

	BezierCurve.thickness

	BezierCurve.__init__()

	BezierCurve.__new__()

	Circle
	Circle.radius

	Circle.__init__()

	Circle.__new__()

	Ellipse
	Ellipse.a

	Ellipse.b

	Ellipse.__init__()

	Ellipse.__new__()

	Sector
	Sector.angle

	Sector.start_angle

	Sector.radius

	Sector.__init__()

	Sector.__new__()

	Line
	Line.x2

	Line.y2

	Line.__init__()

	Line.__new__()

	Rectangle
	Rectangle.width

	Rectangle.height

	Rectangle.__init__()

	Rectangle.__new__()

	Box
	Box.width

	Box.height

	Box.__init__()

	Box.__new__()

	BorderedRectangle
	BorderedRectangle.width

	BorderedRectangle.height

	BorderedRectangle.border_color

	BorderedRectangle.__init__()

	BorderedRectangle.__new__()

	Triangle
	Triangle.x2

	Triangle.y2

	Triangle.x3

	Triangle.y3

	Triangle.__init__()

	Triangle.__new__()

	Star
	Star.outer_radius

	Star.inner_radius

	Star.num_spikes

	Star.__init__()

	Star.__new__()

	Polygon
	Polygon.__init__()

	Polygon.__new__()

	MultiLine
	MultiLine.thickness

	MultiLine.__init__()

	MultiLine.__new__()

	pyglet.text
	pyglet.text.caret
	Caret

	pyglet.text.document
	Abstract representation

	Paragraph breaks

	Document classes

	Style attributes

	AbstractDocument

	FormattedDocument

	InlineElement

	UnformattedDocument

	STYLE_INDETERMINATE

	pyglet.text.layout
	Style attributes

	IncrementalTextDecorationGroup

	IncrementalTextLayout

	IncrementalTextLayoutGroup

	ScrollableTextDecorationGroup

	ScrollableTextLayout

	ScrollableTextLayoutGroup

	TextDecorationGroup

	TextLayout

	TextLayoutGroup

	get_default_decoration_shader()

	get_default_image_layout_shader()

	get_default_layout_shader()

	DocumentDecodeException

	DocumentDecoder
	DocumentDecoder.decode()

	DocumentLabel
	DocumentLabel.__init__()

	DocumentLabel.get_style()

	DocumentLabel.set_style()

	DocumentLabel.bold

	DocumentLabel.color

	DocumentLabel.font_name

	DocumentLabel.font_size

	DocumentLabel.italic

	DocumentLabel.opacity

	DocumentLabel.text

	HTMLLabel
	HTMLLabel.__init__()

	HTMLLabel.text

	Label
	Label.__init__()

	decode_attributed()

	decode_html()

	decode_text()

	get_decoder()

	load()

	pyglet.window
	pyglet.window.key
	KeyStateHandler

	modifiers_string()

	motion_string()

	symbol_string()

	user_key()

	Key Constants

	pyglet.window.mouse
	MouseStateHandler

	buttons_string()

	LEFT

	MIDDLE

	MOUSE4

	MOUSE5

	RIGHT

	Getting started

	Creating a game window

	Working with multiple screens

	Specifying the OpenGL context properties

	Classes
	Window

	FPSDisplay

	MouseCursor

	DefaultMouseCursor

	ImageMouseCursor

	Exceptions
	MouseCursorException

	NoSuchConfigException

	NoSuchDisplayException

	WindowException

External Resources

	Related Documentation

	Projects using pyglet
	cocos2d

	Arcade

Development Guide

	Contributing
	Communication

	Issue Tracker

	Getting the latest development version

	Contributing to the source

	Contributing to the documentation

	Contact

	Development environment
	Linux or Mac OSX
	Setting up

	Finishing

	Windows
	Setting up

	Finishing

	Documentation and Type Hints
	programming guide

	API documentation
	docstring rules

	typing rules

	example

	documentation tips

	Developer reference
	building

	auto-generated details

	Testing pyglet
	Test Suites
	Unit tests

	Integration tests

	Interactive tests

	Running tests

	Writing tests
	Annotations

	Making a pyglet release
	Major version increase

	OpenGL Interface Implementation
	ctypes linkage

	Missing extensions

	ctypes Wrapper Generation
	Generating GL wrappers (new version)

	Generating GL wrappers (old version)

	Generated GL wrappers

	Generating Xlib wrappers

	wraptypes
	Parser Modifications

	Preprocessor

	CParser

	CtypesParser

	Media manual
	Domain knowledge

	Current code architecture
	Source

	FFmpegStreamingSource

	Player

	AudioPlayer

	AudioDriver

	Normal operation of the Player

	Helpful tools

	Convert video to mkv

	Media logging manual
	Workflows
	User submitting debug info

	Changing code in pyglet ffmpeg subsystem

	Changing the debug code for pyglet ffmpeg

	Session

	Active session

	Commands Summary
	Primary commands

	Helper commands

	Data directory layout

	Code Layout and conventions
	Scripts (commands)

	Modules

	Scripts that also acts as modules

	Commands detailed
	bokeh_timeline.py

	compare.py

	configure.py

	mp.py

	playmany.py

	report.py

	retry_crashed.py

	run_test_suite.py

	summarize.py

	timeline.py

	Samples

	pycharm notes

Installation

Note

These instructions apply to pyglet 2.0.

pyglet is a pure Python library, with no hard dependencies on other modules.
No special steps or complitation are required for installation. You can install
from on PyPI [https://pypi.python.org/pypi/pyglet] via pip. For example:

pip install --upgrade --user pyglet

You can also clone the repository using git and install from source:

git clone https://github.com/pyglet/pyglet.git
cd pyglet
python setup.py install --user

In addition, since pyglet is pure Python, you can also just copy the pyglet
subfolder directly into the root of your project without installation into your
local site-packages.

To play video, or a wide selection of compressed audio, pyglet can optionally
use FFmpeg [https://www.ffmpeg.org/download.html].

Running the examples

The source code archives include examples. Archive zip files are
available on Github [https://github.com/pyglet/pyglet/releases/]:

unzip pyglet-x.x.x.zip
cd pyglet-x.x.x
python examples/hello_world.py

As mentioned above, you can also clone the repository using Git:

git clone https://github.com/pyglet/pyglet.git
cd pyglet
python examples/hello_world.py

Writing a pyglet application

Getting started with a new library or framework can be daunting, especially
when presented with a large amount of reference material to read.
This chapter gives a very quick introduction to pyglet without going into
too much detail.

Hello, World

We’ll begin with the requisite “Hello, World” introduction. This program will
open a window with some text in it, and wait to be closed. You can find the
entire program in the examples/programming_guide/hello_world.py file.

Begin by importing the pyglet package:

import pyglet

Create a pyglet.window.Window by calling its default constructor.
The window will be visible as soon as it’s created, and will have reasonable
default values for all its parameters:

window = pyglet.window.Window()

To display the text, we’ll create a Label. Keyword
arguments are used to set the font, position and anchorage of the label:

label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

The Window dispatches an on_draw() event whenever
it’s ready to redraw its contents. pyglet provides several ways to attach event
handlers to objects; a simple way is to use a decorator:

@window.event
def on_draw():
 window.clear()
 label.draw()

Within the above on_draw() handler, the window is
cleared to the default background color (black), and the label is drawn.

Finally, call:

pyglet.app.run()

This will enter pyglet’s default event loop, and let pyglet respond to
application events such as the mouse and keyboard.
Your event handlers will now be called as required, and the
run() method will return only when all application
windows have been closed.

If you are coming from another library, you may be used to writing your
own event loop. This is possible to do with pyglet as well, but it is
generally not necessary; see The application event loop for details.

Image viewer

Most games and applications will need to load and display images on the
screen. In this example we’ll load an image from the application’s
directory and display it within the window:

import pyglet

window = pyglet.window.Window()
image = pyglet.resource.image('kitten.jpg')

@window.event
def on_draw():
 window.clear()
 image.blit(0, 0)

pyglet.app.run()

We used the image() function of pyglet.resource
to load the image, which automatically locates the file relative to the source
file (rather than the working directory). To load an image not bundled with
the application (for example, specified on the command line), you would use
pyglet.image.load().

The blit() method draws the image. The
arguments (0, 0) tell pyglet to draw the image at pixel coordinates 0,
0 in the window (the lower-left corner).

The complete code for this example is located in
examples/programming_guide/image_viewer.py.

Handling mouse and keyboard events

So far the only event used is the on_draw()
event. To react to keyboard and mouse events, it’s necessary to write and
attach event handlers for these events as well:

import pyglet

window = pyglet.window.Window()

@window.event
def on_key_press(symbol, modifiers):
 print('A key was pressed')

@window.event
def on_draw():
 window.clear()

pyglet.app.run()

Keyboard events have two parameters: the virtual key symbol that was
pressed, and a bitwise combination of any modifiers that are present (for
example, the CTRL and SHIFT keys).

The key symbols are defined in pyglet.window.key:

from pyglet.window import key

@window.event
def on_key_press(symbol, modifiers):
 if symbol == key.A:
 print('The "A" key was pressed.')
 elif symbol == key.LEFT:
 print('The left arrow key was pressed.')
 elif symbol == key.ENTER:
 print('The enter key was pressed.')

See the pyglet.window.key documentation for a complete list
of key symbols.

Mouse events are handled in a similar way:

from pyglet.window import mouse

@window.event
def on_mouse_press(x, y, button, modifiers):
 if button == mouse.LEFT:
 print('The left mouse button was pressed.')

The x and y parameters give the position of the mouse when the button
was pressed, relative to the lower-left corner of the window.

There are more than 20 event types that you can handle on a window. An easy
way to find the event names and parameters you need is to add the following
lines to your program:

event_logger = pyglet.window.event.WindowEventLogger()
window.push_handlers(event_logger)

This will cause all events received on the window to be printed to the
console.

An example program using keyboard and mouse events is in
examples/programming_guide/events.py

Playing sounds and music

pyglet makes it easy to play and mix multiple sounds together.
The following example plays an MP3 file [1]:

import pyglet

music = pyglet.resource.media('music.mp3')
music.play()

pyglet.app.run()

As with the image loading example presented earlier,
media() locates the sound file in the application’s
directory (not the working directory). If you know the actual filesystem path
(either relative or absolute), use pyglet.media.load().

By default, audio is streamed when playing. This works well for longer music
tracks. Short sounds, such as a gunfire shot used in a game, should instead be
fully decoded in memory before they are used. This allows them to play more
immediately and incur less of a CPU performance penalty. It also allows playing
the same sound repeatedly without reloading it.
Specify streaming=False in this case:

sound = pyglet.resource.media('shot.wav', streaming=False)
sound.play()

The examples/media_player.py example demonstrates playback of streaming
audio and video using pyglet. The examples/noisy/noisy.py example
demonstrates playing many short audio samples simultaneously, as in a game.

[1]
MP3 and other compressed audio formats require FFmpeg to be installed.
Uncompressed WAV files can be played without FFmpeg.

Where to next?

The examples above have shown you how to display something on the screen,
and perform a few basic tasks. You’re probably left with a lot of questions
about these examples, but don’t worry. The remainder of this programming guide
goes into greater technical detail on many of pyglet’s features. If you’re
an experienced developer, you can probably dive right into the sections that
interest you.

For new users, it might be daunting to read through everything all at once.
If you feel overwhelmed, we recommend browsing through the beginnings of each
chapter, and then having a look at a more in-depth example project.
You can find an example of a 2D game in the In-depth game example
section.

To write advanced 3D applications or achieve optimal performance in your 2D
applications, you can also work with OpenGL directly. pyglet provides raw
OpenGL bindings which give you direct access to the OpenGL libraries, which
does require knowledge of ctypes to use effectively. To simplify things a
bit, the graphics module provides higher level objects for the most common
OpenGL constructs. The Shaders and Rendering section goes into more detail.

There are numerous examples of pyglet applications in the examples/
directory of the documentation and source distributions. If you get
stuck, or have any questions, join us on the mailing list [http://groups.google.com/group/pyglet-users] or Discord [https://discord.gg/QXyegWe]!

Windowing

A Window in pyglet corresponds to a top-level
window as provided by the operating system. Windows can be floating (with or
without a border), or fullscreen.

Creating a window

If the Window constructor is called with no
arguments, defaults will be assumed for all parameters:

window = pyglet.window.Window()

The default parameters used are:

	The window will have a size of 960x540, and not be resizable.

	A default context will be created using template config described in
OpenGL configuration options.

	The window caption will be the name of the executing Python script
(i.e., sys.argv[0]).

Windows are visible as soon as they are created, unless you give the
visible=False argument to the constructor. The following
example shows how to create and display a window in two steps:

window = pyglet.window.Window(visible=False)
... perform some additional initialisation
window.set_visible()

OpenGL Context configuration

The context of a window cannot be changed once created. There are several
ways to control the context that is created:

	Supply an already-created Context using the
context argument:

context = config.create_context(share)
window = pyglet.window.Window(context=context)

	Supply a complete Config obtained from a
Screen using the config
argument. The context will be created from this config and will share object
space with the most recently created existing context:

config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

	Supply a template Config using the config
argument. The context will use the best config obtained from the default
screen of the default display:

config = gl.Config(double_buffer=True)
window = pyglet.window.Window(config=config)

	Specify a Screen using the screen argument.
The context will use a config created from default template configuration
and this screen:

screen = display.get_screens()[screen_number]
window = pyglet.window.Window(screen=screen)

	Specify a Display using the display argument.
The default screen on this display will be used to obtain a context using
the default template configuration:

display = platform.get_display(display_name)
window = pyglet.window.Window(display=display)

If a template Config is given, a
Screen or Display
may also be specified; however any other combination of parameters
overconstrains the configuration and some parameters will be ignored.

Fullscreen windows

If the fullscreen=True argument is given to the window constructor, the
window will draw to an entire screen rather than a floating window. No window
border or controls will be shown, so you must ensure you provide some other
means to exit the application.

By default, the default screen on the default display will be used, however
you can optionally specify another screen to use instead. For example, the
following code creates a fullscreen window on the secondary screen:

screens = display.get_screens()
window = pyglet.window.Window(fullscreen=True, screen=screens[1])

There is no way to create a fullscreen window that spans more than one window
(for example, if you wanted to create an immersive 3D environment across
multiple monitors). Instead, you should create a separate fullscreen window
for each screen and attach identical event handlers to all windows.

Windows can be toggled in and out of fullscreen mode with the
set_fullscreen()
method. For example, to return to windowed mode from fullscreen:

window.set_fullscreen(False)

The previous window size and location, if any, will attempt to be restored,
however the operating system does not always permit this, and the window may
have relocated.

Size and position

This section applies only to windows that are not fullscreen. Fullscreen
windows always have the width and height of the screen they fill.

You can specify the size of a window as the first two arguments to the window
constructor. In the following example, a window is created with a width of
1280 pixels and a height of 720 pixels:

window = pyglet.window.Window(1280, 720)

The “size” of a window refers to the drawable space within it, excluding any
additional borders or title bar drawn by the operating system.

You can allow the user to resize your window by specifying resizable=True
in the constructor. If you do this, you may also want to handle the
on_resize() event:

window = pyglet.window.Window(resizable=True)

@window.event
def on_resize(width, height):
 print(f'The window was resized to {width},{height}')

You can specify a minimum and maximum size that the window can be resized to
by the user with the set_minimum_size() and
set_maximum_size() methods:

window.set_minimum_size(320, 200)
window.set_maximum_size(1024, 768)

The window can also be resized programatically (even if the window is not
user-resizable) with the set_size() method:

window.set_size(1280, 720)

The window will initially be positioned by the operating system. Typically,
it will use its own algorithm to locate the window in a place that does not
block other application windows, or cascades with them. You can manually
adjust the position of the window using the
get_location() and
set_location() methods:

x, y = window.get_location()
window.set_location(x + 20, y + 20)

Note that unlike the usual coordinate system in pyglet, the window location is
relative to the top-left corner of the desktop, as shown in the following
diagram:

[image: ../_images/window_location.png]

The position and size of the window relative to the desktop.

Appearance

Window style

Non-fullscreen windows can be created in one of six styles: default, dialog,
tool, borderless, transparent, or overlay. Transparent and overlay windows are
only implemented for Windows, not Mac OS X. Examples of the appearances of each
of these styles under Windows and Mac OS X 13.2 are shown below.

	Style

	Windows

	Mac OS X

	WINDOW_STYLE_DEFAULT

	[image: ../_images/window_xp_default.png]

	[image: ../_images/window_osx_default.png]

	WINDOW_STYLE_DIALOG

	[image: ../_images/window_xp_dialog.png]

	[image: ../_images/window_osx_dialog.png]

	WINDOW_STYLE_TOOL

	[image: ../_images/window_xp_tool.png]

	[image: ../_images/window_osx_tool.png]

	WINDOW_STYLE_BORDERLESS

	<Image Not Available>

	[image: ../_images/window_osx_borderless.png]

	WINDOW_STYLE_TRANSPARENT

	[image: ../_images/window_xp_transparent.png]

	<Not Implemented>

	WINDOW_STYLE_OVERLAY

	[image: ../_images/window_xp_overlay.png]

	<Not Implemented>

Non-resizable variants of these window styles may appear slightly different
(for example, the maximize button will either be disabled or absent).

Besides the change in appearance, the window styles affect how the window
behaves. For example, tool windows do not usually appear in the task bar and
cannot receive keyboard focus. Dialog windows cannot be minimized. Overlay’s
require custom sizing and moving of the respective window.
the appropriate window style for your windows means your application will
behave correctly for the platform on which it is running, however that
behaviour may not be consistent across Windows, Linux and Mac OS X.

The appearance and behaviour of windows in Linux will vary greatly depending
on the distribution, window manager and user preferences.

Borderless windows (WINDOW_STYLE_BORDERLESS)
are not decorated by the operating system at all, and have no way to be resized
or moved around the desktop. These are useful for implementing splash screens
or custom window borders.

You can specify the style of the window in the
Window constructor.
Once created, the window style cannot be altered:

window = pyglet.window.Window(style=pyglet.window.Window.WINDOW_STYLE_DIALOG)

Caption

The window’s caption appears in its title bar and task bar icon (on Windows
and some Linux window managers). You can set the caption during window
creation or at any later time using the
set_caption() method:

window = pyglet.window.Window(caption='Initial caption')
window.set_caption('A different caption')

Icon

The window icon appears in the title bar and task bar icon on Windows and
Linux, and in the dock icon on Mac OS X. Dialog and tool windows do not
necessarily show their icon.

Windows, Mac OS X and the Linux window managers each have their own preferred
icon sizes:

	Windows XP
	
	A 16x16 icon for the title bar and task bar.

	A 32x32 icon for the Alt+Tab switcher.

	Mac OS X
	
	Any number of icons of resolutions 16x16, 24x24, 32x32, 48x48, 72x72
and 128x128. The actual image displayed will be interpolated to the
correct size from those provided.

	Linux
	
	No constraints, however most window managers will use a 16x16 and a
32x32 icon in the same way as Windows XP.

The set_icon() method allows you to set any
number of images as the icon.
pyglet will select the most appropriate ones to use and apply them to
the window. If an alternate size is required but not provided, pyglet will
scale the image to the correct size using a simple interpolation algorithm.

The following example provides both a 16x16 and a 32x32 image as the window
icon:

window = pyglet.window.Window()
icon1 = pyglet.image.load('16x16.png')
icon2 = pyglet.image.load('32x32.png')
window.set_icon(icon1, icon2)

You can use images in any format supported by pyglet, however it is
recommended to use a format that supports alpha transparency such as PNG.
Windows .ico files are supported only on Windows, so their use is discouraged.
Mac OS X .icons files are not supported at all.

Note that the icon that you set at runtime need not have anything to do with
the application icon, which must be encoded specially in the application
binary (see Self-contained executables).

Visibility

Windows have several states of visibility. Already shown is the
visible property which shows or hides
the window.

Windows can be minimized, which is equivalent to hiding them except that
they still appear on the taskbar (or are minimised to the dock, on OS X).
The user can minimize a window by clicking the appropriate button in the
title bar.
You can also programmatically minimize a window using the
minimize method (there is also a
corresponding maximize method).

When a window is made visible the on_show()
event is triggered. When it is hidden the
on_hide() event is triggered.
On Windows and Linux these events
will only occur when you manually change the visibility of the window or when
the window is minimized or restored. On Mac OS X the user can also hide or
show the window (affecting visibility) using the Command+H shortcut.

Subclassing Window

A useful pattern in pyglet is to subclass Window for
each type of window you will display, or as your main application class. There
are several benefits:

	You can load font and other resources from the constructor, ensuring the
OpenGL context has already been created.

	You can add event handlers simply by defining them on the class. The
on_resize() event will be called as soon as
the window is created (this
doesn’t usually happen, as you must create the window before you can attach
event handlers).

	There is reduced need for global variables, as you can maintain application
state on the window.

The following example shows the same “Hello World” application as presented
in Writing a pyglet application, using a subclass of Window:

class HelloWorldWindow(pyglet.window.Window):
 def __init__(self):
 super().__init__()

 self.label = pyglet.text.Label('Hello, world!')

 def on_draw(self):
 self.clear()
 self.label.draw()

if __name__ == '__main__':
 window = HelloWorldWindow()
 pyglet.app.run()

This example program is located in
examples/programming_guide/window_subclass.py.

Windows and OpenGL contexts

Every window in pyglet has an associated OpenGL context.
Specifying the configuration of this context has already been covered in
Creating a window.
Drawing into the OpenGL context is the only way to draw into the window’s
client area.

Double-buffering

If the window is double-buffered (i.e., the configuration specified
double_buffer=True, the default), OpenGL commands are applied to a hidden
back buffer. This back buffer can be brought to the front using the flip
method. The previous front buffer then becomes the hidden back buffer
we render to in the next frame. If you are using the standard pyglet.app.run
or pyglet.app.EventLoop event loop, this is taken care of
automatically after each on_draw() event.

If the window is not double-buffered, the
flip() operation is unnecessary,
and you should remember only to call pyglet.gl.glFlush() to
ensure buffered commands are executed.

Vertical retrace synchronisation

Double-buffering eliminates one cause of flickering: the user is unable to see
the image as it is painted, only the final rendering. However, it does introduce
another source of flicker known as “tearing”.

Tearing becomes apparent when displaying fast-moving objects in an animation.
The buffer flip occurs while the video display is still reading data from the
framebuffer, causing the top half of the display to show the previous frame
while the bottom half shows the updated frame. If you are updating the
framebuffer particularly quickly you may notice three or more such “tears” in
the display.

pyglet provides a way to avoid tearing by synchronising buffer flips to the
video refresh rate. This is enabled by default, but can be set or unset
manually at any time with the vsync (vertical
retrace synchronisation)
property. A window is created with vsync initially disabled in the following
example:

window = pyglet.window.Window(vsync=False)

It is usually desirable to leave vsync enabled, as it results in flicker-free
animation. There are some use-cases where you may want to disable it, for
example:

	Profiling an application. Measuring the time taken to perform an operation
will be affected by the time spent waiting for the video device to refresh,
which can throw off results. You should disable vsync if you are measuring
the performance of your application.

	If you cannot afford for your application to block. If your application run
loop needs to quickly poll a hardware device, for example, you may want to
avoid blocking with vsync.

Keyboard input

pyglet provides multiple types of keyboard input abstraction:

	Cross-platform key press/release events suitable for game controls

	Unicode text entry with automatic locale and platform handling

	Cross-platform detection of common text editing actions

All of them have the following restrictions:

	There must be at least one pyglet Window
instance which can hold keyboard focus

	Windows created with the following styles cannot hold keyboard focus:

	WINDOW_STYLE_BORDERLESS

	WINDOW_STYLE_TOOL

If your project’s requirements fall outside these restrictions, you
should consider alternatives. Examples include:

	Python’s built-in input() [https://docs.python.org/3/library/functions.html#input] function

	The Textual [https://www.textualize.io/projects/#textual] terminal UI
framework

Keyboard Focus Conventions

Keyboard focus is where the user’s keyboard input is sent.

Desktop operating systems often follow these conventions:

	Only one window can have focus

	Clicking a window gives it focus

	The window with focus is displayed above all others

	The window with focus has a distinct title bar style

	Windows can have focus taken away

	Windows can request focus

However, the items above are not guaranteed to be true.

For example, pyglet allows you to request focus from the OS by calling
Window.activate. However,
the OS may not support the feature. Even if it does support it, the OS
may not only refuse, but do so without notifying the user focus was
requested.

Deviations from the conventions can occur for any of the following
reasons:

	Cause

	Example(s)

	Modal dialogs

	Permission requests and error notifications

	User settings

	Window focus is set to follow the mouse

	Platform quirks

	Split screen utilities and Linux window managers
with multi-focus modes

Keyboard events

The on_key_press() and
on_key_release() events are fired when
any key on the keyboard is pressed or released, respectively. These events
are not affected by “key repeat” – once a key is pressed there are no more
events for that key until it is released.

Both events are parameterised by the same arguments:

def on_key_press(symbol, modifiers):
 pass

def on_key_release(symbol, modifiers):
 pass

Defined key symbols

The symbol argument is an integer that represents a “virtual” key code.
It does not correspond to any particular numbering scheme; in particular
the symbol is not an ASCII character code.

pyglet has key symbols that are hardware and platform independent
for many types of keyboard. These are defined in
pyglet.window.key as constants. For example, the Latin-1
alphabet is simply the letter itself:

key.A
key.B
key.C
...

The numeric keys have an underscore to make them valid identifiers:

key._1
key._2
key._3
...

Various control and directional keys are identified by name:

key.ENTER or key.RETURN
key.SPACE
key.BACKSPACE
key.DELETE
key.MINUS
key.EQUAL
key.BACKSLASH

key.LEFT
key.RIGHT
key.UP
key.DOWN
key.HOME
key.END
key.PAGEUP
key.PAGEDOWN

key.F1
key.F2
...

Keys on the number pad have separate symbols:

key.NUM_1
key.NUM_2
...
key.NUM_EQUAL
key.NUM_DIVIDE
key.NUM_MULTIPLY
key.NUM_SUBTRACT
key.NUM_ADD
key.NUM_DECIMAL
key.NUM_ENTER

Some modifier keys have separate symbols for their left and right sides
(however they cannot all be distinguished on all platforms, including Mac OSX):

key.LCTRL
key.RCTRL
key.LSHIFT
key.RSHIFT
...

Key symbols are independent of any modifiers being active. For example,
lower-case and upper-case letters both generate the A symbol. This is also
true of the number keypad.

Modifiers

The modifiers that are active when the event is generated are combined in a
bitwise fashion and provided in the modifiers parameter. The modifier
constants defined in pyglet.window.key are:

MOD_SHIFT
MOD_CTRL
MOD_ALT Not available on Mac OS X
MOD_WINDOWS Available on Windows only
MOD_COMMAND Available on Mac OS X only
MOD_OPTION Available on Mac OS X only
MOD_CAPSLOCK
MOD_NUMLOCK
MOD_SCROLLLOCK
MOD_ACCEL Equivalent to MOD_CTRL, or MOD_COMMAND on Mac OS X.

For example, to test if the shift key is held down:

if modifiers & MOD_SHIFT:
 pass

Unlike the corresponding key symbols, it is not possible to determine whether
the left or right modifier is held down (though you could emulate this
behaviour by keeping track of the key states yourself).

User-defined key symbols

pyglet does not define key symbols for every keyboard ever made. For example,
non-Latin languages will have many keys not recognised by pyglet (however,
their Unicode representations will still be valid, see
Text Input and Motion Events).
Even English keyboards often have additional so-called “OEM” keys
added by the manufacturer, which might be labelled “Media”, “Volume” or
“Shopping”, for example.

In these cases pyglet will create a key symbol at runtime based on the
hardware scancode of the key. This is guaranteed to be unique for that model
of keyboard, but may not be consistent across other keyboards with the same
labelled key.

The best way to use these keys is to record what the user presses after a
prompt, and then check for that same key symbol. Many commercial games have
similar functionality in allowing players to set up their own key bindings.

Remembering key state

KeyStateHandler is a convenience class which
stores the current keyboard state. Instances can be pushed onto the event
handler stack of any window and subsequently queried using key code constants
as keys:

from pyglet.window import key

window = pyglet.window.Window()
keys = key.KeyStateHandler()
window.push_handlers(keys)

Check if the spacebar is currently pressed:
if keys[key.SPACE]:
 pass

Text Input and Motion Events

pyglet offers Unicode text input events in addition to individual key events.
There are several benefits to this:

	Automatic and correct mapping of platform-specific modifiers and key symbols
to Unicode characters

	Key repeat for held keys is automatically applied to text input according to
the user’s operating system preferences.

	Dead keys and compose keys are automatically interpreted to produce
diacritic marks or combining characters.

	Keyboard input can be routed via an input palette, for example to input
characters from Asian languages.

	Text input can come from other user-defined sources, such as handwriting or
voice recognition.

The actual source of input (i.e., which keys were pressed, or what input
method was used) should be considered outside of the scope of the application
– the operating system provides the necessary services.

When text is entered into a window, the
on_text() event is fired:

def on_text(text):
 pass

The only parameter provided is a Unicode string.
Although this will usually be one character long for direct keyboard
input, more complex input methods such as an input palettes may provide
entire words or phrases at once.

How does this differ from on_key_press()?

	Always use the on_text()
event when you need a string from a series of keystrokes

	Never use the on_text() event when you
need individual presses, such as controlling player movement in a game

Motion events

In addition to key presses and entering new text, pyglet also supports common
text editing motions:

	Selecting text

	Moving the caret in response to non-character keys

	Deleting, copying, and pasting text

pyglet automatically detects and translates platform-specific versions of
supported motions into cross-platform
on_text_motion() events. These events are
intended be handled by the Caret
of any active IncrementalTextLayout, such
as those used in TextEntry fields.

The motion argument to the event handler will be a constant value
defined in pyglet.window.key. The table below lists the
supported text motions with their keyboard mapping on each supported
platform.

	Constant

	Behaviour

	Windows/Linux

	Mac OS X

	MOTION_UP

	Move the cursor up

	Up

	Up

	MOTION_DOWN

	Move the cursor down

	Down

	Down

	MOTION_LEFT

	Move the cursor left

	Left

	Left

	MOTION_RIGHT

	Move the cursor right

	Right

	Right

	MOTION_COPY

	Copy the current selection to the clipboard

	Ctrl + C

	Command + C

	MOTION_PASTE

	Paste the clipboard contents into the current document

	Ctrl + V

	Command + V

	MOTION_PREVIOUS_WORD

	Move the cursor to the previous word

	Ctrl + Left

	Option + Left

	MOTION_NEXT_WORD

	Move the cursor to the next word

	Ctrl + Right

	Option + Right

	MOTION_BEGINNING_OF_LINE

	Move the cursor to the beginning of the current line

	Home

	Command + Left

	MOTION_END_OF_LINE

	Move the cursor to the end of the current line

	End

	Command + Right

	MOTION_PREVIOUS_PAGE

	Move to the previous page

	Page Up

	Page Up

	MOTION_NEXT_PAGE

	Move to the next page

	Page Down

	Page Down

	MOTION_BEGINNING_OF_FILE

	Move to the beginning of the document

	Ctrl + Home

	Home

	MOTION_END_OF_FILE

	Move to the end of the document

	Ctrl + End

	End

	MOTION_BACKSPACE

	Delete the previous character

	Backspace

	Backspace

	MOTION_DELETE

	Delete the next character, or the current character

	Delete

	Delete

If you believe pyglet needs to add support for a motion which is
currently missing, please skip to
Adding New Motions.

Customizing this behavior for an individual project is currently
difficult due to the way carets and text entry fields are interconnected.
However, using on_key_press() to handle
motion events should still be avoided for the following reasons:

	Supported platforms can assign a key to different motions. For example
the Home key moves the cursor to the start of a line on Windows, but
to the beginning of a document on Mac OS.

	Users expect holding down a motion’s keys to repeat it released. For
example, holding Backspace deletes multiple characters. However, only
one on_key_press() event occurs per
keypress.

Adding New Motions

Before adding a new motion, please do the following:

	Consult the previous section & each platform’s documentation to be
sure it is:

	A common text operation present on every platform

	Not already implemented by pyglet

	Attempt to find the corresponding functionality in
Apple’s NSTextView documentation [https://developer.apple.com/documentation/appkit/nstextview/]

	Discuss the addition and any remaining questions with maintainers by either:

	Filing a GitHub Issue [https://github.com/pyglet/pyglet/issues]

	Discord or the mailing list [https://github.com/pyglet/pyglet#contact]

Then, once you’re ready:

	Add the motion constant to pyglet.window.key

	Add an entry for the constant in the Motion events
section

	Implement shared handling behavior in on_text_motion()

	Implement Mac support (usually the most confusing step)

	Open pyglet/window/cocoa/pyglet_textview.py [https://github.com/pyglet/pyglet/blob/master/pyglet/window/cocoa/pyglet_textview.py]

	Implement a corresponding handler method on
PygletTextView_Implementation (pyglet’s subclass of NSTextView)

	Add the Windows keyboard shortcut

	Open pyglet/window/win32/__init__.py [https://github.com/pyglet/pyglet/blob/master/pyglet/window/win32/__init__.py]

	Add the keyboard shortcut to the _motion_map dictionary

	Add the Linux keyboard shortcut

	Open pyglet/window/xlib/__init__.py [https://github.com/pyglet/pyglet/blob/master/pyglet/window/xlib/__init__.py]

	Add the keyboard shortcut to the _motion_map dictionary

Be sure to test your changes before making a PR if possible!

If you do not have access to a specific platform above, include this in your PR’s
notes.

Keyboard exclusivity

Some keystrokes or key combinations normally bypass applications and are
handled by the operating system. Some examples are Alt+Tab (Command+Tab on
Mac OS X) to switch applications and the keys mapped to Expose on Mac OS X.

You can disable these hot keys and have them behave as ordinary keystrokes for
your application. This can be useful if you are developing a kiosk
application which should not be closed, or a game in which it is possible for
a user to accidentally press one of these keys.

To enable this mode, call
Window.set_exclusive_keyboard
on the window it should apply to. On Mac OS X, the dock and menu bar
will slide out of view while exclusive keyboard is activated.

The following restrictions apply on Windows:

	Only Alt+Tab can be disabled

	Users will still be able to switch applications through:

	Ctrl+Escape

	Alt+Escape

	the Windows key

	Ctrl+Alt+Delete

The following restrictions apply on Mac OS X:

	The power key is not disabled.

Use of this function is not recommended for general release applications or
games as it violates user-interface conventions.

Mouse input

All pyglet windows can receive input from a 3 button mouse with a
2 dimensional scroll wheel. The mouse pointer is typically drawn by the
operating system, but you can override this and request either a different
cursor shape or provide your own image or animation.

Mouse events

All mouse events are dispatched by the window which receives the event from
the operating system. Typically this is the window over which the mouse
cursor is, however mouse exclusivity and drag operations mean this is not
always the case.

The coordinate space for the mouse pointer’s location is relative to the
bottom-left corner of the window, with increasing Y values approaching the top
of the screen (note that this is “upside-down” compared with many other
windowing toolkits, but is consistent with the default OpenGL projection in
pyglet).

[image: ../_images/mouse_coordinates.png]

The coordinate space for the mouse pointer.

The most basic mouse event is on_mouse_motion()
which is dispatched every time the mouse moves:

def on_mouse_motion(x, y, dx, dy):
 pass

The x and y parameters give the coordinates of the mouse pointer, relative
to the bottom-left corner of the window.

The event is dispatched every time the operating system registers a mouse
movement. This is not necessarily once for every pixel moved – the operating
system typically samples the mouse at a fixed frequency, and it is easy to
move the mouse faster than this. Conversely, if your application is not
processing events fast enough you may find that several queued-up mouse events
are dispatched in a single dispatch_events()
call. There is no need to concern yourself with either of these issues;
the latter rarely causes problems, and the former can not be avoided.

Many games are not concerned with the actual position of the mouse cursor,
and only need to know in which direction the mouse has moved. For example,
the mouse in a first-person game typically controls the direction the player
looks, but the mouse pointer itself is not displayed.

The dx and dy parameters are for this purpose: they give the distance the
mouse travelled along each axis to get to its present position. This can be
computed naively by storing the previous x and y parameters after every
mouse event, but besides being tiresome to code, it does not take into account
the effects of other obscuring windows. It is best to use the dx and dy
parameters instead.

The following events are dispatched by the Window when a mouse button is
pressed or released, or the mouse is moved while any button is held down:

def on_mouse_press(x, y, button, modifiers):
 pass

def on_mouse_release(x, y, button, modifiers):
 pass

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 pass

The x, y, dx and dy parameters are as for the
on_mouse_motion() event.
The press and release events do not require dx and dy parameters as they
would be zero in this case. The modifiers parameter is as for the keyboard
events, see Keyboard input.

The button parameter signifies which mouse button was pressed, and is one of
the following constants:

pyglet.window.mouse.LEFT
pyglet.window.mouse.MIDDLE
pyglet.window.mouse.RIGHT

The buttons parameter in on_mouse_drag()
is a bitwise combination of all the mouse buttons currently held down.
For example, to test if the user is performing a drag gesture with the
left button:

from pyglet.window import mouse

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 if buttons & mouse.LEFT:
 pass

When the user begins a drag operation (i.e., pressing and holding a mouse
button and then moving the mouse), the window in which they began the drag
will continue to receive the on_mouse_drag()
event as long as the button is held down.
This is true even if the mouse leaves the window.
You generally do not need to handle this specially: it is a convention
among all operating systems that dragging is a gesture rather than a direct
manipulation of the user interface widget.

There are events for when the mouse enters or leaves a window:

def on_mouse_enter(x, y):
 pass

def on_mouse_leave(x, y):
 pass

The coordinates for on_mouse_leave() will
lie outside of your window. These events are not dispatched while a drag
operation is taking place.

The mouse scroll wheel generates the
on_mouse_scroll() event:

def on_mouse_scroll(x, y, scroll_x, scroll_y):
 pass

The scroll_y parameter gives the number of “clicks” the wheel moved, with
positive numbers indicating the wheel was pushed forward. The scroll_x
parameter is 0 for most mice, however some new mice such as the Apple Mighty
Mouse use a ball instead of a wheel; the scroll_x parameter gives the
horizontal movement in this case. The scale of these numbers is not known; it
is typically set by the user in their operating system preferences.

Changing the mouse cursor

The mouse cursor can be set to one of the operating system cursors, a custom
image, or hidden completely. The change to the cursor will be applicable only
to the window you make the change to. To hide the mouse cursor, call
set_mouse_visible():

win = pyglet.window.Window()
win.set_mouse_visible(False)

This can be useful if the mouse would obscure text that the user is typing.
If you are hiding the mouse cursor for use in a game environment, consider
making the mouse exclusive instead; see Mouse exclusivity, below.

Use set_mouse_cursor() to change the appearance
of the mouse cursor. A mouse cursor is an instance of
MouseCursor. You can obtain the operating
system-defined cursors with
get_system_mouse_cursor():

cursor = win.get_system_mouse_cursor(win.CURSOR_HELP)
win.set_mouse_cursor(cursor)

The cursors that pyglet defines are listed below, along with their typical
appearance on Windows and Mac OS X. The pointer image on Linux is dependent
on the window manager.

	Constant

	Windows XP

	Mac OS X

	CURSOR_DEFAULT

	[image: ../_images/cursor_win_default.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_CROSSHAIR

	[image: ../_images/cursor_win_crosshair.png]

	[image: ../_images/cursor_mac_crosshair.png]

	CURSOR_HAND

	[image: ../_images/cursor_win_hand.png]

	[image: ../_images/cursor_mac_hand.png]

	CURSOR_HELP

	[image: ../_images/cursor_win_help.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_NO

	[image: ../_images/cursor_win_no.png]

	[image: ../_images/cursor_mac_no.png]

	CURSOR_SIZE

	[image: ../_images/cursor_win_size.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_SIZE_DOWN

	[image: ../_images/cursor_win_size_up_down.png]

	[image: ../_images/cursor_mac_size_down.png]

	CURSOR_SIZE_DOWN_LEFT

	[image: ../_images/cursor_win_size_nesw.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_SIZE_DOWN_RIGHT

	[image: ../_images/cursor_win_size_nwse.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_SIZE_LEFT

	[image: ../_images/cursor_win_size_left_right.png]

	[image: ../_images/cursor_mac_size_left.png]

	CURSOR_SIZE_LEFT_RIGHT

	[image: ../_images/cursor_win_size_left_right.png]

	[image: ../_images/cursor_mac_size_left_right.png]

	CURSOR_SIZE_RIGHT

	[image: ../_images/cursor_win_size_left_right.png]

	[image: ../_images/cursor_mac_size_right.png]

	CURSOR_SIZE_UP

	[image: ../_images/cursor_win_size_up_down.png]

	[image: ../_images/cursor_mac_size_up.png]

	CURSOR_SIZE_UP_DOWN

	[image: ../_images/cursor_win_size_up_down.png]

	[image: ../_images/cursor_mac_size_up_down.png]

	CURSOR_SIZE_UP_LEFT

	[image: ../_images/cursor_win_size_nwse.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_SIZE_UP_RIGHT

	[image: ../_images/cursor_win_size_nesw.png]

	[image: ../_images/cursor_mac_default.png]

	CURSOR_TEXT

	[image: ../_images/cursor_win_text.png]

	[image: ../_images/cursor_mac_text.png]

	CURSOR_WAIT

	[image: ../_images/cursor_win_wait.png]

	[image: ../_images/cursor_mac_wait.png]

	CURSOR_WAIT_ARROW

	[image: ../_images/cursor_win_wait_arrow.png]

	[image: ../_images/cursor_mac_default.png]

Alternatively, you can use your own image as the mouse cursor. Use
pyglet.image.load() to load the image, then create an
ImageMouseCursor with
the image and “hot-spot” of the cursor. The hot-spot is the point of the
image that corresponds to the actual pointer location on screen, for example,
the point of the arrow:

image = pyglet.image.load('cursor.png')
cursor = pyglet.window.ImageMouseCursor(image, 16, 8)
win.set_mouse_cursor(cursor)

You can even render a mouse cursor directly with OpenGL. You could draw a
3-dimensional cursor, or a particle trail, for example. To do this, subclass
MouseCursor and implement your own draw method.
The draw method will be called with the default pyglet window projection,
even if you are using another projection in the rest of your application.

Mouse exclusivity

It is possible to take complete control of the mouse for your own application,
preventing it being used to activate other applications. This is most useful
for immersive games such as first-person shooters.

When you enable mouse-exclusive mode, the mouse cursor is no longer available.
It is not merely hidden – no amount of mouse movement will make it leave your
application. Because there is no longer a mouse cursor, the x and y
parameters of the mouse events are meaningless; you should use only the dx
and dy parameters to determine how the mouse was moved.

Activate mouse exclusive mode with
set_exclusive_mouse():

win = pyglet.window.Window()
win.set_exclusive_mouse(True)

You should activate mouse exclusive mode even if your window is full-screen:
it will prevent the window “hitting” the edges of the screen, and behave
correctly in multi-monitor setups (a common problem with commercial
full-screen games is that the mouse is only hidden, meaning it can
accidentally travel onto the other monitor where applications are still
visible).

Note that on Linux setting exclusive mouse also disables Alt+Tab and other
hotkeys for switching applications. No workaround for this has yet been
discovered.

Controller & Joystick input

The input module allows you to accept input from USB or Bluetooth
human interface devices (HID). High-level classes are provided for working with
game controllers, joysticks, and the Apple Remote, with named and normalized inputs.
Basic support is also provided for Drawing Tablets, such as those made by Wacom.

The game controller abstraction is most suitable for modern dual-analog stick controllers,
such as those from video game consoles. The joystick abstraction is more generalized,
and suits devices with an arbitrary number of buttons, absolute or relative axis, and hats.
This includes devices like flight sticks, steering wheels, and just about anything else with
digital and/or analog inputs. For most types of games, the game controller abstraction is
recommended.

For advanced use cases, it is also possible to access the low-level input devices directly.
This can be useful if you need direct accesss to the raw inputs, without normalization.
For most application and games this is not required.

The input module provides several methods for querying
devices, and a ControllerManager class to support hot-plugging of Controllers:

get a list of all low-level input devices:
devices = pyglet.input.get_devices()

get a list of all controllers:
controllers = pyglet.input.get_controllers()

get a list of all joysticks:
joysticks = pyglet.input.get_joysticks()

get a list of tablets:
tablets = pyglet.input.get_tablets()

get an Apple Remote, if available:
remote = pyglet.input.get_apple_remote()

create a ControllerManager instance:
controller_manager = pyglet.input.ControllerManager()

Using Controllers

Controllers have a strictly defined set of inputs that mimic the layout of
modern dual-analog stick video game console Controllers. This includes two
analog sticks, analog triggers, a directional pad (dpad), face and shoulder
buttons, and start/back/guide and stick press buttons. Many controllers also
include the ability to play rumble effects (vibration). The following platform
interfaces are used for Controller support:

	platform

	interface

	notes

	Linux

	evdev

	

	Windows

	DirectInput & Xinput

	rumble not implemented on DirectInput

	MacOSX

	IOKit

	rumble not yet implemented

Before using a controller, you must find it and open it. You can either list
and open Controllers manually, or use a ControllerManager.
A ControllerManager provides useful events for easily handling hot-plugging
of Controllers, which is described in a following section. First, however,
lets look at how to do this manually. To get a list of all controllers currently
connected to your computer, call pyglet.input.get_controllers():

controllers = pyglet.input.get_controllers()

Then choose a controller from the list and call Controller.open() to open it:

if controllers:
 controller = controllers[0]
 controller.open()

Once opened, you you can start receiving data from the the inputs.
A variety of analog and digital Control types
are defined, which are automatically normalized to consistent ranges. The
following analog controls are available:

	name

	type

	range

	leftx

	float

	-1~1

	lefty

	float

	-1~1

	rightx

	float

	-1~1

	righty

	float

	-1~1

	dpadx

	float

	-1~1

	dpady

	float

	-1~1

	lefttrigger

	float

	0~1

	righttrigger

	float

	0~1

The following digital controls are available:

	Name

	notes

	a

	the “south” face button

	b

	the “east” face button

	x

	the “west” face button

	y

	the “north” face button

	leftshoulder

	

	rightshoulder

	

	start

	called “options” on some controllers

	back

	called “select” or “share” on some controllers

	guide

	usually in the center, with a company logo

	leftstick

	pressing in on the left analog stick

	rightstick

	pressing in on the right analog stick

These values can be read in two ways. First, you can just query them manually
in your game loop. All control names listed above are properties on the
controller instance:

controller_instance.a (boolean)
controller_instance.leftx (float)

if controller_instance.a == True:
 # do something

Alternatively, since controllers are a subclass of EventDispatcher,
events will be dispatched when any of the values change. This is usually the
recommended way to handle input, since it reduces the chance of “missed” button
presses due to slow polling. The different controls are grouped into the following
event types:

	Event

	Arguments

	types

	on_button_press

	controller, button_name

	Controller, str

	on_button_release

	controller, button_name

	Controller, str

	on_stick_motion

	controller, stick_name, vector

	Controller, str, Vec2

	on_dpad_motion

	controller, left, right, up, down

	Controller, Vec2

	on_trigger_motion

	controller, trigger_name, value

	Controller, str, float

Analog (and Dpad) events can be handled like this:

@controller.event
def on_stick_motion(controller, name, vector):

 if name == "leftstick":
 # Do something with the 2D vector
 elif name == "rightstick":
 # Do something with the 2D vector

@controller.event
def on_trigger_motion(controller, name, value):

 if name == "lefttrigger":
 # Do something with the value
 elif name == "righttrigger":
 # Do something with the value

@controller.event
def on_dpad_motion(controller, vector):
 # Do something with the 2D vector

Digital events can be handled like this:

@controller.event
def on_button_press(controller, button_name):
 if button_name == 'a':
 # start firing
 elif button_name == 'b':
 # do something else

@controller.event
def on_button_release(controller, button_name):
 if button_name == 'a':
 # stop firing
 elif button_name == 'b':
 # do something else

Rumble

Many controllers also support playing rumble (vibration) effects. There
are both strong and weak effects, which can be played independently:

controller.rumble_play_weak(strength, duration=0.5)
controller.rumble_play_strong(strength, duration=0.5)

The strength parameter should be on a scale of 0-1. Values outside of
this range will be clamped. The optional duration parameter is in seconds.
The maximum duration can vary from platform to platform, but is usually
at least 5 seconds. If you play another effect while an existing effect is
still playing, it will replace it. You can also stop playback of a rumble
effect at any time:

controller.rumble_stop_weak()
controller.rumble_stop_strong()

ControllerManager

To simplify hot-plugging of Controllers, the ControllerManager
class is available. This class has a get_controllers() method to be used
in place of pyglet.input.get_controllers(). There are also on_connect
and on_disconnect events, which dispatch a Controller instance whenever one
is connected or disconnected. First lets review the basic functionality.

To use a ControllerManager, first create an instance:

manager = pyglet.input.ControllerManager()

You can then query the currently connected controllers from this instance.
(An empty list is returned if no controllers are detected):

controllers = manager.get_controllers()

Choose a controller from the list and call Controller.open() to open it:

if controllers:
 controller = controllers[0]
 controller.open()

To handle controller connections, attach handlers to the following methods:

@manager.event
def on_connect(controller):
 print(f"Connected: {controller}")

@manager.event
def on_disconnect(controller):
 print(f"Disconnected: {controller}")

Those are the basics, and provide the building blocks necessary to implement
hot-plugging of Controllers in your game. For an example of bringing these
concepts together, have a look at examples/input/controller.py in the
repository.

Note

If you are using a ControllerManager, then you should not use
pyglet.input.get_controllers() directly. The results are
undefined. Use ControllerManager.get_controllers() instead.

Using Joysticks

Before using a joystick, you must find it and open it. To get a list
of all joystick devices currently connected to your computer, call
pyglet.input.get_joysticks():

joysticks = pyglet.input.get_joysticks()

Then choose a joystick from the list and call Joystick.open to open
the device:

if joysticks:
 joystick = joysticks[0]
 joystick.open()

The current position of the joystick is recorded in its ‘x’ and ‘y’
attributes, both of which are normalized to values within the range
of -1 to 1. For the x-axis, x = -1 means the joystick is pushed
all the way to the left and x = 1 means the joystick is pushed to the right.
For the y-axis, a value of y = -1 means that the joystick is pushed up
and a value of y = 1 means that the joystick is pushed down. If other
axis exist, they will be labeled z, rx, ry, or rz.

The state of the joystick buttons is contained in the buttons
attribute as a list of boolean values. A True value indicates that
the corresponding button is being pressed. While buttons may be
labeled A, B, X, or Y on the physical joystick, they are simply
referred to by their index when accessing the buttons list. There
is no easy way to know which button index corresponds to which
physical button on the device without testing the particular joystick,
so it is a good idea to let users change button assignments.

Each open joystick dispatches events when the joystick changes state.
For buttons, there is the on_joybutton_press()
event which is sent whenever any of the joystick’s buttons are pressed:

def on_joybutton_press(joystick, button):
 pass

and the on_joybutton_release() event which is
sent whenever any of the joystick’s buttons are released:

def on_joybutton_release(joystick, button):
 pass

The Joystick parameter is the
Joystick instance whose buttons changed state
(useful if you have multiple joysticks connected).
The button parameter signifies which button changed and is simply an
integer value, the index of the corresponding button in the buttons
list.

For most games, it is probably best to examine the current position of
the joystick directly by using the x and y attributes. However if
you want to receive notifications whenever these values change you
should handle the on_joyaxis_motion() event:

def on_joyaxis_motion(joystick, axis, value):
 pass

The Joystick parameter again tells you which
joystick device changed. The axis parameter is string such as
“x”, “y”, or “rx” telling you which axis changed value. And value
gives the current normalized value of the axis, ranging between -1 and 1.

If the joystick has a hat switch, you may examine its current value by
looking at the hat_x and hat_y attributes. For both, the values
are either -1, 0, or 1. Note that hat_y will output 1 in the up
position and -1 in the down position, which is the opposite of the
y-axis control.

To be notified when the hat switch changes value, handle the
on_joyhat_motion() event:

def on_joyhat_motion(joystick, hat_x, hat_y):
 pass

The hat_x and hat_y parameters give the same values as the
joystick’s hat_x and hat_y attributes.

A good way to use the joystick event handlers might be to define them
within a controller class and then call:

joystick.push_handlers(my_controller)

Please note that you need a running application event loop for the joystick
button an axis values to be properly updated. See the
The application event loop section for more details on how to start
an event loop.

Using the Apple Remote

The Apple Remote is a small infrared remote originally distributed
with the iMac. The remote has six buttons, which are accessed with
the names left, right, up, down, menu, and select.
Additionally when certain buttons are held down, they act as virtual
buttons. These are named left_hold, right_hold, menu_hold, and
select_hold.

To use the remote, first call get_apple_remote():

remote = pyglet.input.get_apple_remote()

Then open it:

if remote:
 remote.open(window, exclusive=True)

The remote is opened in exclusive mode so that while we are using the
remote in our program, pressing the buttons does not activate Front
Row, or change the volume, etc. on the computer.

The following event handlers tell you when a button on the remote has
been either pressed or released:

def on_button_press(button):
 pass

def on_button_release(button):
 pass

The button parameter indicates which button changed and is a string
equal to one of the ten button names defined above: “up”, “down”,
“left”, “left_hold”, “right”, “right_hold”, “select”, “select_hold”,
“menu”, or “menu_hold”.

To use the remote, you may define code for the event handlers in
some controller class and then call:

remote.push_handlers(my_controller)

Low-level Devices

It’s usually easier to use the high-level interfaces but, for specialized
hardware, the low-level device can be accessed directly. You can query the
list of all devices, and check the name attribute to find the correct
device:

for device in pyglet.input.get_devices():
 print(device.name)

After identifying the Device you wish to use, you must first open it:

device.open()

Devices contain a list of Control objects.
There are three types of controls: Button,
AbsoluteAxis, and RelativeAxis.
For helping identify individual controls, each control has at least a
name, and optionally a raw_name attribute. Control values can by
queried at any time by checking the Control.value property. In addition,
every control is also a subclass of EventDispatcher,
so you can add handlers to receive changes as well. All Controls dispatch the
on_change event. Buttons also dispatch on_press and on_release events.:

All controls:

@control.event
def on_change(value):
 print("value:", value)

Buttons:

@control.event
def on_press():
 print("button pressed")

@control.event
def on_release():
 print("button release")

Drawing Shapes

The shapes module is an easy to use option for creating
and manipulating colored shapes, such as rectangles, circles, and
lines. Shapes can be resized, positioned, and rotated where applicable,
and their color and opacity can be changed. All shapes are implemented
using OpenGL primitives, so they can be drawn efficiently with Batched rendering.
In the following examples Batch will be ommitted for brevity, but in
general you always want to use Batched rendering for performance.

For drawing more complex shapes, see the Shaders and Rendering module.

Creating a Shape

Various shapes can be constructed with a specific position, size, and color:

circle = shapes.Circle(x=100, y=150, radius=100, color=(50, 225, 30))
square = shapes.Rectangle(x=200, y=200, width=200, height=200, color=(55, 55, 255))

You can also change the color, or set the opacity after creation. The opacity
can be set on a scale of 0-255, for various levels of transparency:

circle.opacity = 120

The size of Shapes can also be adjusted after creation:

square.width = 200
circle.radius = 99

Anchor Points

Similar to images in pyglet, the “anchor point” of a Shape can be set.
This relates to the center of the shape on the x and y axis. For Circles,
the default anchor point is the center of the circle. For Rectangles,
it is the bottom left corner. Depending on how you need to position your
Shapes, this can be changed. For Rectangles this is especially useful if
you will rotate it, since Shapes will rotate around the anchor point. In
this example, a Rectangle is created, and the anchor point is then set to
the center:

rectangle = shapes.Rectangle(x=400, y=400, width=100, height=50)
rectangle.anchor_x = 50
rectangle.anchor_y = 25
or, set at the same time:
rectangle.anchor_position = 50, 25

The rectangle is then rotated around its anchor point:
rectangle.rotation = 45

If you plan to create a large number of shapes, you can optionally set the
default anchor points:

shapes.Rectangle._anchor_x = 100
shapes.Rectangle._anchor_y = 50

Advanced Operation

You can use the in operator to check whether a point is inside a shape:

circle = shapes.Circle(x=100, y=100, radius=50)
if (200, 200) in circle:
 circle.color = (255, 0, 0)

The following shapes have above features:

	Circle

	Ellipse

	Sector

	Line

	Rectangle

	BorderedRectangle

	Triangle

	Polygon

	Star

Note

pyglet now treats Star as a circle with a radius of
(outer_radius + inner_radius) / 2.

It’s also available for anchored and rotated shapes.

Images and Sprites

pyglet provides functions for loading and saving images in various formats
using native operating system services. If the Pillow [https://pillow.readthedocs.io] library is installed,
many additional formats can be supported. pyglet also includes built-in
codecs for loading PNG and BMP without external dependencies.

Loaded images can be efficiently provided to OpenGL as a texture, and OpenGL
textures and framebuffers can be retrieved as pyglet images to be saved or
otherwise manipulated.

If you’ve done any game or graphics programming, you’re probably familiar with
the concept of “sprites”. pyglet also provides an efficient and comprehensive
Sprite class, for displaying images on the screen
with an optional transform (such as scaling and rotation). If you’re planning
to do anything with images that involves movement and placement on screen,
you’ll likely want to use sprites.

Loading an image

Images can be loaded using the pyglet.image.load() function:

kitten = pyglet.image.load('kitten.png')

If you are distributing your application with included images, consider
using the pyglet.resource module (see Application resources).

Without any additional arguments, pyglet.image.load() will
attempt to load the filename specified using any available image decoder.
This will allow you to load PNG, GIF, JPEG, BMP and DDS files,
and possibly other files as well, depending on your operating system
and additional installed modules (see the next section for details).
If the image cannot be loaded, an
ImageDecodeException will be raised.

You can load an image from any file-like object providing a read method by
specifying the file keyword parameter:

kitten_stream = open('kitten.png', 'rb')
kitten = pyglet.image.load('kitten.png', file=kitten_stream)

In this case the filename kitten.png is optional, but gives a hint to
the decoder as to the file type (it is otherwise unused when a file object
is provided).

Displaying images

Image drawing is usually done in the window’s
on_draw() event handler.
It is possible to draw individual images directly, but usually you will
want to create a “sprite” for each appearance of the image on-screen.

Sprites

A Sprite is a full featured class for displaying instances of Images or
Animations in the window. Image and Animation instances are mainly concerned
with the image data (size, pixels, etc.), wheras Sprites also include
additional properties. These include x/y location, scale, rotation, opacity,
color tint, visibility, and both horizontal and vertical scaling.
Multiple sprites can share the same image; for example, hundreds of bullet
sprites might share the same bullet image.

A Sprite is constructed given an image or animation, and can be directly
drawn with the draw() method:

sprite = pyglet.sprite.Sprite(img=image)

@window.event
def on_draw():
 window.clear()
 sprite.draw()

If created with an animation, sprites automatically handle displaying
the most up-to-date frame of the animation. The following example uses a
scheduled function to gradually move the Sprite across the screen:

def update(dt):
 # Move 10 pixels per second
 sprite.x += dt * 10

Call update 60 times a second
pyglet.clock.schedule_interval(update, 1/60.)

If you need to draw many sprites, using a Batch
to draw them all at once is strongly recommended. This is far more efficient
than calling draw() on each of them in a loop:

batch = pyglet.graphics.Batch()

sprites = [pyglet.sprite.Sprite(image, batch=batch),
 pyglet.sprite.Sprite(image, batch=batch),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

When sprites are collected into a batch, no guarantee is made about the order
in which they will be drawn. If you need to ensure some sprites are drawn
before others (for example, landscape tiles might be drawn before character
sprites, which might be drawn before some particle effect sprites), use two
or more OrderedGroup objects to specify the
draw order:

batch = pyglet.graphics.Batch()
background = pyglet.graphics.OrderedGroup(0)
foreground = pyglet.graphics.OrderedGroup(1)

sprites = [pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

For best performance, you should use as few batches and groups as required.
(See the Shaders and Rendering section for more details on batch
and group rendering). This will reduce the number of internal and OpenGL
operations for drawing each frame.

In addition, try to combine your images into as few textures as possible;
for example, by loading images with pyglet.resource.image()
(see Application resources) or with Texture bins and atlases).
A common pitfall is to use the pyglet.image.load() method to load
a large number of images. This will cause a seperate texture to be created
for each image loaded, resulting in a lot of OpenGL texture binding overhead
for each frame.

Simple image blitting

Drawing images directly is less efficient, but may be adequate for
simple cases. Images can be drawn into a window with the
blit() method:

@window.event
def on_draw():
 window.clear()
 image.blit(x, y)

The x and y coordinates locate where to draw the anchor point of the
image. For example, to center the image at (x, y):

kitten.anchor_x = kitten.width // 2
kitten.anchor_y = kitten.height // 2
kitten.blit(x, y)

You can also specify an optional z component to the
blit() method.
This has no effect unless you have changed the default projection
or enabled depth testing. In the following example, the second
image is drawn behind the first, even though it is drawn after it:

from pyglet.gl import *
glEnable(GL_DEPTH_TEST)

kitten.blit(x, y, 0)
kitten.blit(x, y, -0.5)

The default pyglet projection has a depth range of (-1, 1) – images drawn
with a z value outside this range will not be visible, regardless of whether
depth testing is enabled or not.

Images with an alpha channel can be blended with the existing framebuffer. To
do this you need to supply OpenGL with a blend equation. The following code
fragment implements the most common form of alpha blending, however other
techniques are also possible:

from pyglet.gl import *
glEnable(GL_BLEND)
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

You would only need to call the code above once during your program, before
you draw any images (this is not necessary when using only sprites).

Supported image decoders

The following table shows which codecs are available in pyglet.

	Module

	Class

	Description

	pyglet.image.codecs.dds

	DDSImageDecoder

	Reads Microsoft DirectDraw Surface files containing compressed
textures

	pyglet.image.codecs.wic

	WICDecoder

	Uses Windows Imaging Component services to decode images.

	pyglet.image.codecs.gdiplus

	GDIPlusDecoder

	Uses Windows GDI+ services to decode images.

	pyglet.image.codecs.gdkpixbuf2

	GdkPixbuf2ImageDecoder

	Uses the GTK-2.0 GDK functions to decode images.

	pyglet.image.codecs.pil

	PILImageDecoder

	Wrapper interface around PIL Image class.

	pyglet.image.codecs.quicktime

	QuickTimeImageDecoder

	Uses Mac OS X QuickTime to decode images.

	pyglet.image.codecs.png

	PNGImageDecoder

	PNG decoder written in pure Python.

	pyglet.image.codecs.bmp

	BMPImageDecoder

	BMP decoder written in pure Python.

Each of these classes registers itself with pyglet.image with
the filename extensions it supports. The load()
function will try each image decoder with a matching file extension first,
before attempting the other decoders. Only if every image decoder fails
to load an image will ImageDecodeException
be raised (the origin of the exception will be the first decoder that
was attempted).

You can override this behaviour and specify a particular decoding instance to
use. For example, in the following example the pure Python PNG decoder is
always used rather than the operating system’s decoder:

from pyglet.image.codecs.png import PNGImageDecoder
kitten = pyglet.image.load('kitten.png', decoder=PNGImageDecoder())

This use is not recommended unless your application has to work around
specific deficiences in an operating system decoder.

Supported image formats

The following table lists the image formats that can be loaded on each
operating system. If Pillow is installed, any additional formats it
supports can also be read. See the Pillow docs [http://pillow.readthedocs.io/] for a list of such
formats.

	Extension

	Description

	Windows

	Mac OS X

	Linux [5]

	.bmp

	Windows Bitmap

	X

	X

	X

	.dds

	Microsoft DirectDraw Surface [6]

	X

	X

	X

	.exif

	Exif

	X

	
	

	.gif

	Graphics Interchange Format

	X

	X

	X

	.jpg .jpeg

	JPEG/JIFF Image

	X

	X

	X

	.jp2 .jpx

	JPEG 2000

	
	X

	

	.pcx

	PC Paintbrush Bitmap Graphic

	
	X

	

	.png

	Portable Network Graphic

	X

	X

	X

	.pnm

	PBM Portable Any Map Graphic Bitmap

	
	
	X

	.ras

	Sun raster graphic

	
	
	X

	.tga

	Truevision Targa Graphic

	
	X

	

	.tif .tiff

	Tagged Image File Format

	X

	X

	X

	.xbm

	X11 bitmap

	
	X

	X

	.xpm

	X11 icon

	
	X

	X

The only supported save format is PNG, unless PIL is installed, in which case
any format it supports can be written.

[5]
Requires GTK 2.0 or later.

[6]
Only S3TC compressed surfaces are supported. Depth, volume and cube
textures are not supported.

Working with images

The pyglet.image.load() function returns an
AbstractImage. The actual class of the object depends
on the decoder that was used, but all loaded imageswill have the following
attributes:

	width
	The width of the image, in pixels.

	height
	The height of the image, in pixels.

	anchor_x
	Distance of the anchor point from the left edge of the image, in pixels

	anchor_y
	Distance of the anchor point from the bottom edge of the image, in pixels

The anchor point defaults to (0, 0), though some image formats may contain an
intrinsic anchor point. The anchor point is used to align the image to a
point in space when drawing it.

You may only want to use a portion of the complete image. You can use the
get_region() method to return an image
of a rectangular region of a source image:

image_part = kitten.get_region(x=10, y=10, width=100, height=100)

This returns an image with dimensions 100x100. The region extracted from
kitten is aligned such that the bottom-left corner of the rectangle is 10
pixels from the left and 10 pixels from the bottom of the image.

Image regions can be used as if they were complete images. Note that changes
to an image region may or may not be reflected on the source image, and
changes to the source image may or may not be reflected on any region images.
You should not assume either behaviour.

The AbstractImage hierarchy

The following sections deal with the various concrete image classes. All
images subclass AbstractImage, which provides
the basic interface described in previous sections.

[image: ../_images/abstract_image.png]

The AbstractImage class hierarchy.

An image of any class can be converted into a Texture
or ImageData using the
get_texture() and
get_image_data() methods defined on
AbstractImage. For example, to load an image
and work with it as an OpenGL texture:

kitten = pyglet.image.load('kitten.png').get_texture()

There is no penalty for accessing one of these methods if object is already
of the requested class. The following table shows how concrete classes are
converted into other classes:

	Original class

	.get_texture()

	.get_image_data()

	Texture

	No change

	glGetTexImage2D

	TextureRegion

	No change

	glGetTexImage2D, crop resulting image.

	ImageData

	glTexImage2D [1]

	No change

	ImageDataRegion

	glTexImage2D [1]

	No change

	CompressedImageData

	glCompressedTexImage2D [2]

	N/A [3]

	BufferImage

	glCopyTexSubImage2D [4]

	glReadPixels

You should try to avoid conversions which use glGetTexImage2D or
glReadPixels, as these can impose a substantial performance penalty by
transferring data in the “wrong” direction of the video bus, especially on
older hardware.

[1]
(1,2)
ImageData caches the texture for future use, so there is no
performance penalty for repeatedly blitting an
ImageData.

[2]
If the required texture compression extension is not present, the
image is decompressed in memory and then supplied to OpenGL via
glTexImage2D.

[3]
It is not currently possible to retrieve ImageData for compressed
texture images. This feature may be implemented in a future release
of pyglet. One workaround is to create a texture from the compressed
image, then read the image data from the texture; i.e.,
compressed_image.get_texture().get_image_data().

[4]
BufferImageMask cannot be converted to
Texture.

Accessing or providing pixel data

The ImageData class represents an image as a string
or sequence of pixel data, or as a ctypes pointer. Details such as the pitch
and component layout are also stored in the class. You can access an
ImageData object for any image with
get_image_data():

kitten = pyglet.image.load('kitten.png').get_image_data()

The design of ImageData is to allow applications
to access the detail in the format they prefer, rather than having to
understand the many formats that each operating system and OpenGL make use of.

The pitch and format properties determine how the bytes are arranged.
pitch gives the number of bytes between each consecutive row. The data is
assumed to run from left-to-right, bottom-to-top, unless pitch is negative,
in which case it runs from left-to-right, top-to-bottom. There is no need for
rows to be tightly packed; larger pitch values are often used to align each
row to machine word boundaries.

The format property gives the number and order of color components. It is a
string of one or more of the letters corresponding to the components in the
following table:

	R

	Red

	G

	Green

	B

	Blue

	A

	Alpha

	L

	Luminance

	I

	Intensity

For example, a format string of "RGBA" corresponds to four bytes of
colour data, in the order red, green, blue, alpha. Note that machine
endianness has no impact on the interpretation of a format string.

The length of a format string always gives the number of bytes per pixel. So,
the minimum absolute pitch for a given image is len(kitten.format) *
kitten.width.

To retrieve pixel data in a particular format, use the get_data method,
specifying the desired format and pitch. The following example reads tightly
packed rows in RGB format (the alpha component, if any, will be
discarded):

kitten = kitten.get_image_data()
data = kitten.get_data('RGB', kitten.width * 3)

data always returns a string, however pixel data can be set from a
ctypes array, stdlib array, list of byte data, string, or ctypes pointer.
To set the image data use set_data, again specifying the format and pitch:

kitten.set_data('RGB', kitten.width * 3, data)

You can also create ImageData directly, by providing
each of these attributes to the constructor. This is any easy way to load
textures into OpenGL from other programs or libraries.

Performance concerns

pyglet can use several methods to transform pixel data from one format to
another. It will always try to select the most efficient means. For example,
when providing texture data to OpenGL, the following possibilities are
examined in order:

	Can the data be provided directly using a built-in OpenGL pixel format such
as GL_RGB or GL_RGBA?

	Is there an extension present that handles this pixel format?

	Can the data be transformed with a single regular expression?

	If none of the above are possible, the image will be split into separate
scanlines and a regular expression replacement done on each; then the lines
will be joined together again.

The following table shows which image formats can be used directly with steps
1 and 2 above, as long as the image rows are tightly packed (that is, the
pitch is equal to the width times the number of components).

	Format

	Required extensions

	"I"

	

	"L"

	

	"LA"

	

	"R"

	

	"G"

	

	"B"

	

	"A"

	

	"RGB"

	

	"RGBA"

	

	"ARGB"

	GL_EXT_bgra and GL_APPLE_packed_pixels

	"ABGR"

	GL_EXT_abgr

	"BGR"

	GL_EXT_bgra

	"BGRA"

	GL_EXT_bgra

If the image data is not in one of these formats, a regular expression will be
constructed to pull it into one. If the rows are not tightly packed, or if
the image is ordered from top-to-bottom, the rows will be split before the
regular expression is applied. Each of these may incur a performance penalty
– you should avoid such formats for real-time texture updates if possible.

Image sequences and atlases

Sometimes a single image is used to hold several images. For example, a
“sprite sheet” is an image that contains each animation frame required for a
character sprite animation.

pyglet provides convenience classes for extracting the individual images from
such a composite image as if it were a simple Python sequence. Discrete
images can also be packed into one or more larger textures with texture bins
and atlases.

[image: ../_images/image_sequence.png]

The AbstractImageSequence class hierarchy.

Image grids

An “image grid” is a single image which is divided into several smaller images
by drawing an imaginary grid over it. The following image shows an image used
for the explosion animation in the Astraea example.

[image: ../_images/explosion.png]

An image consisting of eight animation frames arranged in a grid.

This image has one row and eight columns. This is all the information you
need to create an ImageGrid with:

explosion = pyglet.image.load('explosion.png')
explosion_seq = pyglet.image.ImageGrid(explosion, 1, 8)

The images within the grid can now be accessed as if they were their own
images:

frame_1 = explosion_seq[0]
frame_2 = explosion_seq[1]

Images with more than one row can be accessed either as a single-dimensional
sequence, or as a (row, column) tuple; as shown in the following diagram.

[image: ../_images/image_grid.png]

An image grid with several rows and columns, and the slices that can be
used to access it.

Image sequences can be sliced like any other sequence in Python. For example,
the following obtains the first four frames in the animation:

start_frames = explosion_seq[:4]

For efficient rendering, you should use a
TextureGrid.
This uses a single texture for the grid, and each individual image returned
from a slice will be a TextureRegion:

explosion_tex_seq = image.TextureGrid(explosion_seq)

Because TextureGrid is also a
Texture, you can use it either as individual images
or as the whole grid at once.

3D textures

TextureGrid is extremely efficient for drawing many
sprites from a single texture. One problem you may encounter, however,
is bleeding between adjacent images.

When OpenGL renders a texture to the screen, by default it obtains each pixel
colour by interpolating nearby texels. You can disable this behaviour by
switching to the GL_NEAREST interpolation mode, however you then lose the
benefits of smooth scaling, distortion, rotation and sub-pixel positioning.

You can alleviate the problem by always leaving a 1-pixel clear border around
each image frame. This will not solve the problem if you are using
mipmapping, however. At this stage you will need a 3D texture.

You can create a 3D texture from any sequence of images, or from an
ImageGrid. The images must all be of the same
dimension, however they need not be powers of two (pyglet takes care of
this by returning TextureRegion
as with a regular Texture).

In the following example, the explosion texture from above is uploaded into a
3D texture:

explosion_3d = pyglet.image.Texture3D.create_for_image_grid(explosion_seq)

You could also have stored each image as a separate file and used
pyglet.image.Texture3D.create_for_images() to create the 3D texture.

Once created, a 3D texture behaves like any other
AbstractImageSequence; slices return
TextureRegion for an image plane within the texture.
Unlike a TextureGrid, though, you cannot blit a
Texture3D in its entirety.

Texture bins and atlases

Image grids are useful when the artist has good tools to construct the larger
images of the appropriate format, and the contained images all have the same
size. However it is often simpler to keep individual images as separate files
on disk, and only combine them into larger textures at runtime for efficiency.

A TextureAtlas is initially an empty texture,
but images of any size can be added to it at any time. The atlas takes care
of tracking the “free” areas within the texture, and of placing images at
appropriate locations within the texture to avoid overlap.

It’s possible for a TextureAtlas to run out
of space for new images, so applications will need to either know the correct
size of the texture to allocate initally, or maintain multiple atlases as
each one fills up.

The TextureBin class provides a simple means
to manage multiple atlases. The following example loads a list of images,
then inserts those images into a texture bin. The resulting list is a list of
TextureRegion images that map
into the larger shared texture atlases:

images = [
 pyglet.image.load('img1.png'),
 pyglet.image.load('img2.png'),
 # ...
]

bin = pyglet.image.atlas.TextureBin()
images = [bin.add(image) for image in images]

The pyglet.resource module (see Application resources) uses
texture bins internally to efficiently pack images automatically.

Animations

While image sequences and atlases provide storage for related images,
they alone are not enough to describe a complete animation.

The Animation class manages a list of
AnimationFrame objects, each of
which references an image and a duration (in seconds). The storage of
the images is up to the application developer: they can each be discrete, or
packed into a texture atlas, or any other technique.

An animation can be loaded directly from a GIF 89a image file with
load_animation() (supported on Linux, Mac OS X
and Windows) or constructed manually from a list of images or an image
sequence using the class methods (in which case the timing information
will also need to be provided).
The add_to_texture_bin() method provides
a convenient way to pack the image frames into a texture bin for efficient
access.

Individual frames can be accessed by the application for use with any kind of
rendering, or the entire animation can be used directly with a
Sprite (see next section).

The following example loads a GIF animation and packs the images in that
animation into a texture bin. A sprite is used to display the animation in
the window:

window = pyglet.window.Window()

animation = pyglet.image.load_animation('animation.gif')
bin = pyglet.image.atlas.TextureBin()
animation.add_to_texture_bin(bin)
sprite = pyglet.sprite.Sprite(img=animation)

@window.event
def on_draw():
 window.clear()
 sprite.draw()

pyglet.app.run()

When animations are loaded with pyglet.resource (see
Application resources) the frames are automatically packed into a texture bin.

This example program is located in
examples/programming_guide/animation.py, along with a sample GIF animation
file.

Framebuffers

To simplify working with framebuffers, pyglet provides the
FrameBuffer and RenderBuffer
classes. These work as you would expect, and allow a simple way to add texture
attachments. Attachment and target types can be specified as

from pyglet.gl import *

Prepare the buffers. One texture (for easy access), and one Renderbuffer:
color_buffer = pyglet.image.Texture.create(width, height, min_filter=GL_NEAREST, mag_filter=GL_NEAREST)
depth_buffer = pyglet.image.Renderbuffer(width, height, GL_DEPTH_COMPONENT)

Create a Framebuffer, and attach:
framebuffer = pyglet.image.Framebuffer()
framebuffer.attach_texture(color_buffer, attachment=GL_COLOR_ATTACHMENT0)
framebuffer.attach_renderbuffer(depth_buffer, attachment=GL_DEPTH_ATTACHMENT)

When drawing:
framebuffer.bind()

pyglet also provides a simple abstraction over the “default” framebuffer,
as components of the AbstractImage hierarchy.

[image: ../_images/buffer_image.png]

The BufferImage hierarchy.

	One or more colour buffers, represented by
ColorBufferImage

	An optional depth buffer, represented by
DepthBufferImage

	An optional stencil buffer, with each bit represented by
BufferImageMask

You cannot create the buffer images directly; instead you must obtain
instances via the BufferManager.
Use get_buffer_manager() to get this singleton:

buffers = image.get_buffer_manager()

Only the back-left color buffer can be obtained (i.e., the front buffer is
inaccessible, and stereo contexts are not supported by the buffer manager):

color_buffer = buffers.get_color_buffer()

This buffer can be treated like any other image. For example, you could copy
it to a texture, obtain its pixel data, save it to a file, and so on. This can
be useful if you want to save a “screen shot” of the running application:

image_data = color_buffer.get_image_data()
image_data.save("screenshot.png")

The depth buffer can be obtained similarly:

depth_buffer = buffers.get_depth_buffer()

The auxiliary buffers and stencil bits are obtained by requesting one, which
will then be marked as “in-use”. This permits multiple libraries and your
application to work together without clashes in stencil bits or auxiliary
buffer names. For example, to obtain a free stencil bit:

mask = buffers.get_buffer_mask()

The buffer manager maintains a weak reference to the buffer mask, so that when
you release all references to it, it will be returned to the pool of available
masks.

Similarly, a free auxiliary buffer is obtained:

aux_buffer = buffers.get_aux_buffer()

When using the stencil or auxiliary buffers, make sure you explicitly request
these when creating the window. See OpenGL configuration options for
details.

OpenGL imaging

This section assumes you are familiar with texture mapping in OpenGL (for
example, chapter 9 of the OpenGL Programming Guide [http://www.glprogramming.com/red/]).

To create a texture from any AbstractImage,
call get_texture():

kitten = image.load('kitten.jpg')
texture = kitten.get_texture()

Textures are automatically created and used by
ImageData when blitted. Itis useful to use
textures directly when aiming for high performance or 3D applications.

The Texture class represents any texture object.
The target attribute gives the
texture target (for example, GL_TEXTURE_2D) and
id the texturename.
For example, to bind a texture:

glBindTexture(texture.target, texture.id)

Texture dimensions

Implementations of OpenGL prior to 2.0 require textures to have dimensions
that are powers of two (i.e., 1, 2, 4, 8, 16, …). Because of this
restriction, pyglet will always create textures of these dimensions (there are
several non-conformant post-2.0 implementations). This could have unexpected
results for a user blitting a texture loaded from a file of non-standard
dimensions. To remedy this, pyglet returns a
TextureRegion of the larger
texture corresponding to just the part of the texture covered by the original
image.

A TextureRegion has an owner attribute that
references the larger texture. The following session demonstrates this:

>>> rgba = image.load('tests/image/rgba.png')
>>> rgba
<ImageData 235x257> # The image is 235x257
>>> rgba.get_texture()
<TextureRegion 235x257> # The returned texture is a region
>>> rgba.get_texture().owner
<Texture 256x512> # The owning texture has power-2 dimensions
>>>

A TextureRegion defines a
tex_coords attribute that gives
the texture coordinates to use for a quad mapping the whole image.
tex_coords is a 4-tuple of 3-tuple
of floats; i.e., each texture coordinate is given in 3 dimensions.
The following code can be used to render a quad for a texture region:

texture = kitten.get_texture()
t = texture.tex_coords
w, h = texture.width, texture.height
array = (GLfloat * 32)(
 t[0][0], t[0][1], t[0][2], 1.,
 x, y, z, 1.,
 t[1][0], t[1][1], t[1][2], 1.,
 x + w, y, z, 1.,
 t[2][0], t[2][1], t[2][2], 1.,
 x + w, y + h, z, 1.,
 t[3][0], t[3][1], t[3][2], 1.,
 x, y + h, z, 1.)

glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT)
glInterleavedArrays(GL_T4F_V4F, 0, array)
glDrawArrays(GL_QUADS, 0, 4)
glPopClientAttrib()

The blit() method does this.

Use the pyglet.image.Texture.create() method to create
either a texture region from a larger power-2 sized texture,
or a texture with the exact dimensions using the
GL_texture_rectangle_ARB extension.

Texture internal format

pyglet automatically selects an internal format for the texture based on the
source image’s format attribute. The following table describes how it is
selected.

	Format

	Internal format

	Any format with 3 components

	GL_RGB

	Any format with 2 components

	GL_LUMINANCE_ALPHA

	"A"

	GL_ALPHA

	"L"

	GL_LUMINANCE

	"I"

	GL_INTENSITY

	Any other format

	GL_RGBA

Note that this table does not imply any mapping between format components and
their OpenGL counterparts. For example, an image with format "RG" will use
GL_LUMINANCE_ALPHA as its internal format; the luminance channel will be
averaged from the red and green components, and the alpha channel will be
empty (maximal).

Use the pyglet.image.Texture.create() class method to create a texture
with a specific internal format.

Texture filtering

By default, all textures are created with smooth (GL_LINEAR) filtering.
In some cases you may wish to have different filtered applied. Retro style
pixel art games, for example, would require sharper textures. To achieve this,
pas GL_NEAREST to the min_filter and mag_filter parameters when
creating a texture. It is also possible to set the default filtering by
setting the default_min_filter and default_mag_filter class attributes
on the Texture class. This will cause all textures created internally by
pyglet to use these values:

pyglet.image.Texture.default_min_filter = GL_LINEAR
pyglet.image.Texture.default_mag_filter = GL_LINEAR

Saving an image

Any image can be saved using the save method:

kitten.save('kitten.png')

or, specifying a file-like object:

kitten_stream = open('kitten.png', 'wb')
kitten.save('kitten.png', file=kitten_stream)

The following example shows how to grab a screenshot of your application
window:

pyglet.image.get_buffer_manager().get_color_buffer().save('screenshot.png')

Note that images can only be saved in the PNG format unless the Pillow library
is installed.

Playing Sound and Video

pyglet can load and play many audio and video formats, often with
support for surround sound and video effects.

WAV and MP3 files are the most commonly supported across platforms. The
formats a specific computer can play are determined by which of the
following are available:

	The built-in pyglet WAV file decoder (always available)

	Platform-specific APIs and libraries

	PyOgg

	FFmpeg version 4, 5, or 6

Video is played into OpenGL textures, allowing real-time manipulation
by applications. Examples include use in 3D environments or shader-based
effects. To play video, FFmpeg must be
installed.

Audio is played back with one of the following: OpenAL, XAudio2,
DirectSound, or PulseAudio. Hardware-accelerated mixing is available
on all of them. 3D positional audio and surround sound features are
available on all back-ends other than PulseAudio.

Audio drivers

pyglet can use OpenAL, XAudio2, DirectSound, or PulseAudio to play
sound. Only one driver can be used at a time, but the selection can
be changed by altering the configuration and restarting the program.

The default driver preference order works well for most users. However,
you may override it by setting a different preference sequence before
the pyglet.media module is loaded. See
Choosing the audio driver to learn more.

The available drivers depend on your operating system:

	Windows

	Mac OS X

	Linux

	OpenAL [2]

	OpenAL

	OpenAL [2]

	DirectSound

	
	

	XAudio2

	
	PulseAudio [1]

[1]
The PulseAudio driver has
limitations. For audio-intensive programs, consider using
OpenAL.

[2]
(1,2)
OpenAL does not come preinstalled on Windows and some
Linux distributions.

Choosing the audio driver

The 'audio' key of the pyglet.options dictionary
specifies the audio driver preference order.

On import, the pyglet.media will try each entry from first to
last until it either finds a working driver or runs out of entries. For
example, the default is equivalent to setting the following value:

pyglet.options['audio'] = ('xaudio2', 'directsound', 'openal', 'pulse', 'silent')

You can also set a custom preference order. For example, we could add
this line before importing the media module:

pyglet.options['audio'] = ('openal', 'pulse', 'xaudio2', 'directsound', 'silent')

It tells pyglet to try using the OpenAL driver first. If is not
available, try Pulseaudio, XAudio2, and DirectSound in that order.
If all else fails, no driver will be instantiated and the game will
run silently.

The value for the 'audio' key can be a list or tuple which contains
one or more of the following strings:

	String

	Audio driver

	'openal'

	OpenAL

	'directsound'

	DirectSound

	'xaudio2'

	XAudio2

	'pulse'

	PulseAudio

	'silent'

	No audio output

You must set any custom 'audio' preference order before importing
pyglet.media. This can also be set through an environment variable;
see Environment settings.

The following sections describe the requirements and limitations of each audio
driver.

XAudio2

XAudio2 is only available on Windows Vista and above and is the replacement of
DirectSound. This provides hardware accelerated audio support for newer operating
systems.

Note that in some stripped down versions of Windows 10, XAudio2 may not be available
until the required DLL’s are installed.

DirectSound

DirectSound is available only on Windows, and is installed by default.
pyglet uses only DirectX 7 features. On Windows Vista, DirectSound does not
support hardware audio mixing or surround sound.

OpenAL

The favored driver for Mac OS X, but also available on other systems.

This driver has the following advantages:

	Either preinstalled or easy to install on supported platforms.

	Implements features which may be absent from other drivers or
OS-specific versions of their backing APIs.

Its main downsides are:

	Not guaranteed to be installed on platforms other than Mac OS X

	On recent Windows versions, the XAudio2 and
DirectSound backends may support more
features.

Windows users can download an OpenAL implementation from openal.org [https://www.openal.org/downloads]
or their sound device’s manufacturer.

On Linux, the following apply:

	It can usually be installed through your distro’s package manager.

	It may already be installed as a dependency of other packages.

	It lacks the limitations of the PulseAudio
driver.

The commands below should install OpenAL on the most common Linux
distros:

	Common Linux Distros

	Install Command

	Ubuntu, Pop!_OS, Debian

	apt install libopenal1

	Arch, Manjaro

	pacman -S openal

	Fedora, Nobara

	dnf install openal-soft

You may need to prefix these commands with either sudo or another
command. Consult your distro’s documentation for more information.

PulseAudio

This backend is almost always supported, but it has limited features.

If it fails to initialize, consult your distro’s documentation to learn
which supported audio back-ends you can install.

Missing features

Although PulseAudio can theoretically support advanced multi-channel
audio, the pyglet driver does not. The following features will not
work properly:

	Positional audio: automatically changing the volume for individual
audio channels based on the position of the sound source

	Integration with surround sound

Switching to OpenAL should automatically enable them.

Supported media types

pyglet has included support for loading Wave (.wav) files, which are therefore
guaranteed to work on all platforms. pyglet will also use various platform libraries
and frameworks to support a limited amount of compressed audio types, without the need
for FFmpeg. While FFmpeg supports a large array of formats and codecs, it may be an
unnecessarily large dependency when only simple audio playback is needed.

These formats are supported natively under the following systems and codecs:

Windows Media Foundation

Supported on Windows operating systems.

The following are supported on Windows Vista and above:

	MP3

	WMA

	ASF

	SAMI/SMI

The following are also supported on Windows 7 and above:

	AAC/ADTS

The following is undocumented but known to work on Windows 10:

	FLAC

GStreamer

Supported on Linux operating systems that have the GStreamer installed. Please note that the
associated Python packages for gobject & gst are also required. This varies by distribution,
but will often already be installed along with GStreamer.

	MP3

	FLAC

	OGG

	M4A

CoreAudio

Supported on Mac operating systems.

	AAC

	AC3

	AIF

	AU

	CAF

	MP3

	M4A

	SND

	SD2

PyOgg

Supported on Windows, Linux, and Mac operating systems.

PyOgg is a lightweight Python library that provides Python bindings for Opus, Vorbis,
and FLAC codecs.

If the PyOgg module is installed in your site packages, pyglet will optionally detect
and use it. Since not all operating systems can decode the same audio formats natively,
it can often be a hassle to choose an audio format that is truely cross platform with
a small footprint. This wrapper was created to help with that issue.

Supports the following formats:

	OGG

	FLAC

	OPUS

To install PyOgg, please see their installation guide on readthedocs.io [https://pyogg.readthedocs.io/en/latest/installation.html].

FFmpeg

Note

The most recent pyglet release can use FFmpeg 4.X, 5.X, or 6.X

See FFmpeg installation to learn more.

FFmpeg is best when you need to support the maximum number of formats
and encodings. It is also worth considering the following:

	Support for many formats and container types means large download size

	FFmpeg’s compile options allow it to be built and used under either
the LGPL or GPL license

See the following sections to learn more.

See FFmpeg & licenses to learn more.

Supported Formats

It is difficult to provide a complete list of FFmpeg’s features due to
the large number of audio and video codecs, options, and container
formats it supports. Refer to the FFmpeg documentation [https://ffmpeg.org/ffmpeg.html] for
more information.

Known supported audio formats include:

	AU

	MP2

	MP3

	OGG/Vorbis

	WAV

	WMA

Known supported video formats include:

	AVI

	DivX

	H.263

	H.264

	MPEG

	MPEG-2

	OGG/Theora

	Xvid

	WMV

	Webm

The easiest way to check whether a file will load through FFmpeg is to
try playing it through the media_player.py example. New releases of
FFmpeg may fix bugs and add support for new formats.

FFmpeg & licenses

FFmpeg’s code uses different licenses for different parts.

The core of the project uses a modified LGPL license. However, the GPL
is used for certain optional parts. Using these components, as well as
bundling FFmpeg binaries which include them, may require full GPL
compliance. As a result, some organizations may restrict some or all
use of FFmpeg.

pyglet’s FFmpeg bindings do not rely on the optional GPL-licensed parts.
Therefore, most projects should be free to use any license they choose
for their own code as long as they use one of the following approaches:

	Require users to install FFmpeg themselves using either:

	The FFmpeg installation section on this page

	Custom instructions for a specific FFmpeg version

	Make FFmpeg optional as described at the end of the
FFmpeg installation instructions

	Bundle an LGPL-only build of FFmpeg

See the following to learn more:

	FFmpeg’s license overview [https://www.ffmpeg.org/legal.html]

	The license documentation for your specific FFmpeg version:

	The FFmpeg 4.4 license breakdown [https://ffmpeg.org/doxygen/4.4/md_LICENSE.html]

	The FFmpeg 5.1 license breakdown [https://ffmpeg.org/doxygen/5.1/md_LICENSE.html]

	The FFmpeg 6.0 license breakdown [https://ffmpeg.org/doxygen/6.0/md_LICENSE.html]

FFmpeg installation

You can install FFmpeg for your platform by following the instructions found
in the FFmpeg download [https://www.ffmpeg.org/download.html] page. You must
choose the shared build for the targeted OS with the architecture similar to
the Python interpreter.

All recent pyglet versions support FFmpeg 4.x and 5.x. To use FFmpeg 6.X,
you must use pyglet 2.0.8 or later.

Choose the correct architecture depending on the targeted
Python interpreter. If you’re shipping your project with a 32 bits
interpreter, you must download the 32 bits shared binaries.

On Windows, the usual error message when the wrong architecture was downloaded
is:

WindowsError: [Error 193] %1 is not a valid Win32 application

Finally make sure you download the shared builds, not the static or the
dev builds.

For Mac OS and Linux, the library is usually already installed system-wide.
It may be easiest to list FFmpeg as a requirement for your project,
and leave it up to the user to ensure that it is installed.
For Windows users, it’s not recommended to install the library in one of the
windows sub-folders.

Instead we recommend to use the pyglet.options
search_local_libs:

import pyglet
pyglet.options['search_local_libs'] = True

This will allow pyglet to find the FFmpeg binaries in the lib sub-folder
located in your running script folder.

Another solution is to manipulate the environment variable. On Windows you can
add the dll location to the PATH:

os.environ["PATH"] += "path/to/ffmpeg"

For Linux and Mac OS:

os.environ["LD_LIBRARY_PATH"] += ":" + "path/to/ffmpeg"

Tip

Prevent crashes by checking for FFmpeg before loading media!

Call pyglet.media.have_ffmpeg() to check whether
FFmpeg was detected correctly. If it returns False, you can
take an appropriate action instead of crashing. Examples
include:

	Showing a helpful error in the GUI or console output

	Exiting gracefully after the the user clicks OK on a dialog

	Limiting the formats your project will attempt to load

Loading media

Audio and video files are loaded in the same way, using the
pyglet.media.load() function, providing a filename:

source = pyglet.media.load('explosion.wav')

If the media file is bundled with the application, consider using the
resource module (see Application resources).

The result of loading a media file is a
Source object. This object provides useful
information about the type of media encoded in the file, and serves as an
opaque object used for playing back the file (described in the next section).

The load() function will raise a
MediaException if the format is unknown.
IOError may also be raised if the file could not be read from disk.
Future versions of pyglet will also support reading from arbitrary file-like
objects, however a valid filename must currently be given.

The length of the media file is given by the
duration property, which returns the media’s
length in seconds.

Audio metadata is provided in the source’s
audio_format attribute, which is None for
silent videos. This metadata is not generally useful to applications. See
the AudioFormat class documentation for details.

Video metadata is provided in the source’s
video_format attribute, which is None for
audio files. It is recommended that this attribute is checked before
attempting play back a video file – if a movie file has a readable audio
track but unknown video format it will appear as an audio file.

You can use the video metadata, described in a
VideoFormat object, to set up display of the video
before beginning playback. The attributes are as follows:

	Attribute

	Description

	width, height

	Width and height of the video image, in pixels.

	sample_aspect

	The aspect ratio of each video pixel.

You must take care to apply the sample aspect ratio to the video image size
for display purposes. The following code determines the display size for a
given video format:

def get_video_size(width, height, sample_aspect):
 if sample_aspect > 1.:
 return width * sample_aspect, height
 elif sample_aspect < 1.:
 return width, height / sample_aspect
 else:
 return width, height

Media files are not normally read entirely from disk; instead, they are
streamed into the decoder, and then into the audio buffers and video memory
only when needed. This reduces the startup time of loading a file and reduces
the memory requirements of the application.

However, there are times when it is desirable to completely decode an audio
file in memory first. For example, a sound that will be played many times
(such as a bullet or explosion) should only be decoded once. You can instruct
pyglet to completely decode an audio file into memory at load time:

explosion = pyglet.media.load('explosion.wav', streaming=False)

The resulting source is an instance of StaticSource,
which provides the same interface as a StreamingSource.
You can also construct a StaticSource directly from an
already- loaded Source:

explosion = pyglet.media.StaticSource(pyglet.media.load('explosion.wav'))

Audio Synthesis

In addition to loading audio files, the pyglet.media.synthesis
module is available for simple audio synthesis. There are several basic
waveforms available, including:

	Sine

	Square

	Sawtooth

	Triangle

	WhiteNoise

	Silence

These waveforms can be constructed by specifying a duration, frequency,
and sample rate. At a minimum, a duration is required. For example:

sine = pyglet.media.synthesis.Sine(3.0, frequency=440, sample_rate=44800)

For shaping the waveforms, several simple envelopes are available.
These envelopes affect the amplitude (volume), and can make for more
natural sounding tones. You first create an envelope instance,
and then pass it into the constructor of any of the above waveforms.
The same envelope instance can be passed to any number of waveforms,
reducing duplicate code when creating multiple sounds.
If no envelope is used, all waveforms will default to the FlatEnvelope
of maximum amplitude, which esentially has no effect on the sound.
Check the module documentation of each Envelope to see which parameters
are available.

	FlatEnvelope

	LinearDecayEnvelope

	ADSREnvelope

	TremoloEnvelope

An example of creating an envelope and waveforms:

adsr = pyglet.media.synthesis.ADSREnvelope(attack=0.05, decay=0.2, release=0.1)
saw = pyglet.media.synthesis.Sawtooth(duration=1.0, frequency=220, envelope=adsr)

The waveforms you create with the synthesis module can be played like any
other loaded sound. See the next sections for more detail on playback.

Simple audio playback

Many applications, especially games, need to play sounds in their entirety
without needing to keep track of them. For example, a sound needs to be
played when the player’s space ship explodes, but this sound never needs to
have its volume adjusted, or be rewound, or interrupted.

pyglet provides a simple interface for this kind of use-case. Call the
play() method of any Source
to play it immediately and completely:

explosion = pyglet.media.load('explosion.wav', streaming=False)
explosion.play()

You can call play() on any
Source, not just
StaticSource.

The return value of play() is a
Player, which can either be
discarded, or retained to maintain control over the sound’s playback.

Controlling playback

You can implement many functions common to a media player using the
Player
class. Use of this class is also necessary for video playback. There are no
parameters to its construction:

player = pyglet.media.Player()

A player will play any source that is queued on it. Any number of sources
can be queued on a single player, but once queued, a source can never be
dequeued (until it is removed automatically once complete). The main use of
this queueing mechanism is to facilitate “gapless” transitions between
playback of media files.

The queue() method is used to queue
a media on the player - a StreamingSource or a
StaticSource. Either you pass one instance, or you
can also pass an iterable of sources. This provides great flexibility. For
instance, you could create a generator which takes care of the logic about
what music to play:

def my_playlist():
 yield intro
 while game_is_running():
 yield main_theme
 yield ending

player.queue(my_playlist())

When the game ends, you will still need to call on the player:

player.next_source()

The generator will pass the ending media to the player.

A StreamingSource can only ever be queued on one
player, and only once on that player. StaticSource
objects can be queued any number of times on any number of players. Recall
that a StaticSource can be created by passing
streaming=False to the pyglet.media.load() method.

In the following example, two sounds are queued onto a player:

player.queue(source1)
player.queue(source2)

Playback begins with the player’s play() method
is called:

player.play()

Standard controls for controlling playback are provided by these methods:

	Method

	Description

	play()

	Begin or resume playback of the current source.

	pause()

	Pause playback of the current source.

	next_source()

	Dequeue the current source and move to the next one immediately.

	seek()

	Seek to a specific time within the current source.

Note that there is no stop method. If you do not need to resume playback,
simply pause playback and discard the player and source objects. Using the
next_source() method does not guarantee gapless
playback.

There are several properties that describe the player’s current state:

	Property

	Description

	time

	The current playback position within the current source, in
seconds. This is read-only (but see the seek() method).

	playing

	True if the player is currently playing, False if there are no
sources queued or the player is paused. This is read-only (but
see the pause() and play() methods).

	source

	A reference to the current source being played. This is
read-only (but see the queue() method).

	volume

	The audio level, expressed as a float from 0 (mute) to 1 (normal
volume). This can be set at any time.

	loop

	True if the current source should be repeated when reaching
the end. If set to False, playback will continue to the next
queued source.

Handling playback events

When a player reaches the end of the current source, an on_eos()
(on end-of-source) event is dispatched. Players have a default handler for this event,
which will either repeat the current source (if the loop
attribute has been set to True), or move to the next queued source immediately.
When there are no more queued sources, the on_player_eos()
event is dispatched, and playback stops until another source is queued.

For loop control you can change the loop attribute
at any time, but be aware that unless sufficient time is given for the future
data to be decoded and buffered there may be a stutter or gap in playback.
If set well in advance of the end of the source (say, several seconds), there
will be no disruption.

The end-of-source behavior can be further customized by setting your own event handlers;
see Event dispatching & handling. You can either replace the default event handlers directly,
or add an additional event as described in the reference. For example:

my_player.on_eos = my_player.pause

Gapless playback

To play back multiple similar sources without any audible gaps,
SourceGroup is provided.
A SourceGroup can only contain media sources
with identical audio or video format. First create an instance of
SourceGroup, and then add all desired additional
sources with the add() method.
Afterwards, you can queue the SourceGroup
on a Player as if it was a single source.

Incorporating video

When a Player is playing back a source with
video, use the texture property to obtain the
video frame image. This can be used to display the current video image
syncronised with the audio track, for example:

@window.event
def on_draw():
 player.texture.blit(0, 0)

The texture is an instance of pyglet.image.Texture, with an internal
format of either GL_TEXTURE_2D or GL_TEXTURE_RECTANGLE_ARB. While the
texture will typically be created only once and subsequentally updated each
frame, you should make no such assumption in your application – future
versions of pyglet may use multiple texture objects.

Positional audio

pyglet includes features for positioning sound within a 3D space. This is
particularly effective with a surround-sound setup, but is also applicable to
stereo systems.

A Player in pyglet has an associated position
in 3D space – that is, it is equivalent to an OpenAL “source”. The properties
for setting these parameters are described in more detail in the API
documentation; see for example position and
pitch.

A “listener” object is provided by the audio driver. To obtain the listener
for the current audio driver:

pyglet.media.get_audio_driver().get_listener()

This provides similar properties such as
position,
forward_orientation and
up_orientation that
describe the position of the user in 3D space.

Note that only mono sounds can be positioned. Stereo sounds will play back as
normal, and only their volume and pitch properties will affect the sound.

Ticking the clock

If you are using pyglet’s media libraries outside of a pyglet app, you will need
to use some kind of loop to tick the pyglet clock periodically (perhaps every
200ms or so), otherwise only the first small sample of media will be played:

pyglet.clock.tick()

If you wish to have a media source loop continuously (player.loop = True) you will
also need to ensure Pyglet’s events are dispatched inside your loop:

pyglet.app.platform_event_loop.dispatch_posted_events()

If you are inside a pyglet app then calling pyglet.app.run() takes care of
all this for you.

Displaying text

pyglet provides the font module for efficiently rendering
high-quality antialiased Unicode glyphs. pyglet can use any installed font
on the operating system, or you can provide your own font with your
application.

Please note that not all font formats are supported,
see Supported font formats

Text rendering is performed with the text module, which
can display word-wrapped formatted text. There is also support for
interactive editing of text on-screen with a caret.

Simple text rendering

The following complete example creates a window that displays
“Hello, World” centered vertically and horizontally:

window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

@window.event
def on_draw():
 window.clear()
 label.draw()

pyglet.app.run()

The example demonstrates the most common uses of text rendering:

	The font name and size are specified directly in the constructor.
Additional parameters exist for setting the bold and italic styles and the
color of the text.

	The position of the text is given by the x and y coordinates. The
meaning of these coordinates is given by the anchor_x and anchor_y
parameters.

	The actual drawing of the text to the screen is done with the
pyglet.text.Label.draw() method. Labels can also be added to a
graphics batch; see Batched rendering for details.

The HTMLLabel() class is used similarly, but accepts
an HTML formatted string instead of parameters describing the style.
This allows the label to display text with mixed style:

label = pyglet.text.HTMLLabel(
 'Hello, <i>world</i>',
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

See Formatted text for details on the subset of HTML that is
supported.

The document/layout model

The Label() class demonstrated above presents a
simplified interface to pyglet’s complete text rendering capabilities.
The underlying TextLayout() and
AbstractDocument classes provide a
“model/view” interface to all of pyglet’s text features.

[image: ../_images/text_classes.png]

Documents

A document is the “model” part of the architecture, and describes the
content and style of the text to be displayed. There are two concrete
document classes: UnformattedDocument
and FormattedDocument.
UnformattedDocument models a document
containing text in just one style, whereas
FormattedDocument allows the style to
change within the text.

An empty, unstyled document can be created by constructing either of the
classes directly. Usually you will want to initialise the document with some
text, however. The decode_text(),
decode_attributed() and
decode_html() functions return a document given a
source string. For decode_text(),
this is simply a plain text string, and the return value is an
UnformattedDocument:

document = pyglet.text.decode_text('Hello, world.')

decode_attributed() and
decode_html() are described in detail in the next
section.

The text of a document can be modified directly as a property on the object:

document.text = 'Goodbye, cruel world.'

However, if small changes are being made to the document it can be more
efficient (when coupled with an appropriate layout; see below) to use the
delete_text() and
insert_text() methods instead.

Layouts

The actual layout and rendering of a document is performed by the
TextLayout() classes.
This split exists to reduce the complexity of the code, and to allow
a single document to be displayed in multiple layouts simultaneously (in other
words, many layouts can display one document).

Each of the TextLayout() classes perform layout
in the same way, but represent a trade-off in efficiency of update against
efficiency of drawing and memory usage.

The base TextLayout() class uses little memory,
and shares its graphics group with other
TextLayout() instances in the same batch
(see Batched rendering). When the text or style of the document
is modified, or the layout constraints change (for example, the width of the
layout changes), the entire text layout is recalculated.
This is a potentially expensive operation, especially for long documents.
This makes TextLayout() suitable
for relatively short or unchanging documents.

ScrollableTextLayout is a small extension to
TextLayout() that culls the
text outside of a specified view rectangle, and allows text to be scrolled within that
rectangle without performing the layout calculuation again. Because of this
clipping rectangle the graphics group cannot be shared with other text
layouts, so for ideal performance
ScrollableTextLayout should be used only
if scrolling is required.

IncrementalTextLayout uses a more sophisticated
layout algorithm that performs less work for small changes to documents.
For example, if a document is being edited by the user, only the immediately
affected lines of text are recalculated when a character is typed or deleted.
IncrementalTextLayout
also performs view rectangle culling, reducing the amount of layout and
rendering required when the document is larger than the view.
IncrementalTextLayout should be used for
large documents or documents that change rapidly.

All the layout classes can be constructed given a document and display
dimensions:

layout = pyglet.text.layout.TextLayout(document, width, height)

Additional arguments to the constructor allow the specification of a graphics
batch and group (recommended if many layouts are to be rendered), and the
optional multiline and wrap_lines flags.

	multiline
	To honor newlines in the document you will need to set this to True. If
you do not then newlines will be rendered as plain spaces.

	wrap_lines
	If you expect that your document lines will be wider than the display width
then pyglet can automatically wrap them to fit the width by setting this
option to True. Note that wrapping only works if there are spaces in the
text, so it may not be suitable for languages without spaces.

Like labels, layouts are positioned through their x, y,
anchor_x and anchor_y properties.
Note that unlike AbstractImage, the anchor
properties accept a string such as "bottom" or "center" instead of a
numeric displacement.

Formatted text

The FormattedDocument class maintains
style information for individual characters in the text, rather than a
single style for the whole document.
Styles can be accessed and modified by name, for example:

Get the font name used at character index 0
font_name = document.get_style('font_name', 0)

Set the font name and size for the first 5 characters
document.set_style(0, 5, dict(font_name='Arial', font_size=12))

Internally, character styles are run-length encoded over the document text; so
longer documents with few style changes do not use excessive memory.

From the document’s point of view, there are no predefined style names: it
simply maps names and character ranges to arbitrary Python values.
It is the TextLayout classes that interpret
this style information; for example, by selecting a different font based on the
font_name style. Unrecognised style names are ignored by the layout
– you can use this knowledge to store additional data alongside the
document text (for example, a URL behind a hyperlink).

Character styles

The following character styles are recognised by all
TextLayout() classes.

Where an attribute is marked “as a distance” the value is assumed to be
in pixels if given as an int or float, otherwise a string of the form
"0u" is required, where 0 is the distance and u is the unit; one
of "px" (pixels), "pt" (points), "pc" (picas), "cm"
(centimeters), "mm" (millimeters) or "in" (inches). For example,
"14pt" is the distance covering 14 points, which at the default DPI of 96
is 18 pixels.

	font_name
	Font family name, as given to pyglet.font.load().

	font_size
	Font size, in points.

	bold
	Boolean.

	italic
	Boolean.

	underline
	4-tuple of ints in range (0, 255) giving RGBA underline color, or None
(default) for no underline.

	kerning
	Additional space to insert between glyphs, as a distance. Defaults to 0.

	baseline
	Offset of glyph baseline from line baseline, as a distance. Positive
values give a superscript, negative values give a subscript. Defaults to
0.

	color
	4-tuple of ints in range (0, 255) giving RGBA text color

	background_color
	4-tuple of ints in range (0, 255) giving RGBA text background color; or
None for no background fill.

Paragraph styles

Although FormattedDocument does not
distinguish between character- and paragraph-level styles,
TextLayout() interprets the following styles
only at the paragraph level. You should take care to set these styles for
complete paragraphs only, for example, by using
set_paragraph_style().

These styles are ignored for layouts without the multiline flag set.

	align
	"left" (default), "center" or "right".

	indent
	Additional horizontal space to insert before the first glyph of the
first line of a paragraph, as a distance.

	leading
	Additional space to insert between consecutive lines within a paragraph,
as a distance. Defaults to 0.

	line_spacing
	Distance between consecutive baselines in a paragraph, as a distance.
Defaults to None, which automatically calculates the tightest line
spacing for each line based on the maximum font ascent and descent.

	margin_left
	Left paragraph margin, as a distance.

	margin_right
	Right paragraph margin, as a distance.

	margin_top
	Margin above paragraph, as a distance.

	margin_bottom
	Margin below paragraph, as a distance. Adjacent margins do not collapse.

	tab_stops
	List of horizontal tab stops, as distances, measured from the left edge of
the text layout. Defaults to the empty list. When the tab stops
are exhausted, they implicitly continue at 50 pixel intervals.

	wrap
	Boolean. If True (the default), text wraps within the width of the layout.

For the purposes of these attributes, paragraphs are split by the newline
character (U+0010) or the paragraph break character (U+2029). Line breaks
within a paragraph can be forced with character U+2028.

Tabs

A tab character in pyglet text is interpreted as ‘move to the next tab stop’.
Tab stops are specified in pixels, not in some font unit; by default
there is a tab stop every 50 pixels and because of that a tab can look too
small for big fonts or too big for small fonts.

Additionally, when rendering text with tabs using a monospace font,
character boxes may not align vertically.

To avoid these visualization issues the simpler solution is to convert
the tabs to spaces before sending a string to a pyglet text-related class.

Attributed text

pyglet provides two formats for decoding formatted documents from plain text.
These are useful for loading preprepared documents such as help screens. At
this time there is no facility for saving (encoding) formatted documents.

The attributed text format is an encoding specific to pyglet that can
exactly describe any FormattedDocument.
You must use this encoding to access all of the features of pyglet text layout.
For a more accessible, yet less featureful encoding,
see the HTML encoding, described below.

The following example shows a simple attributed text encoded document:

Chapter 1

My father's family name being Pirrip, and my Christian name Philip,
my infant tongue could make of both names nothing longer or more
explicit than Pip. So, I called myself Pip, and came to be called
Pip.

I give Pirrip as my father's family name, on the authority of his
tombstone and my sister - Mrs. Joe Gargery, who married the
blacksmith. As I never saw my father or my mother, and never saw
any likeness of either of them (for their days were long before the
days of photographs), my first fancies regarding what they were
like, were unreasonably derived from their tombstones.

Newlines are ignored, unless two are made in succession, indicating a
paragraph break. Line breaks can be forced with the \\ sequence:

This is the way the world ends \\
This is the way the world ends \\
This is the way the world ends \\
Not with a bang but a whimper.

Line breaks are also forced when the text is indented with one or more spaces
or tabs, which is useful for typesetting code:

The following paragraph has hard line breaks for every line of code:

 import pyglet

 window = pyglet.window.Window()
 pyglet.app.run()

Text can be styled using a attribute tag:

This sentence makes a {bold True}bold{bold False} statement.

The attribute tag consists of the attribute name (in this example, bold)
followed by a Python bool, int, float, string, tuple or list.

Unlike most structured documents such as HTML, attributed text has no concept
of the “end” of a style; styles merely change within the document.
This corresponds exactly to the representation used by
FormattedDocument internally.

Some more examples follow:

{font_name 'Times New Roman'}{font_size 28}Hello{font_size 12},
{color (255, 0, 0, 255)}world{color (0, 0, 0, 255)}!

(This example uses 28pt Times New Roman for the word “Hello”, and 12pt
red text for the word “world”).

Paragraph styles can be set by prefixing the style name with a period (.).
This ensures the style range exactly encompasses the paragraph:

{.margin_left "12px"}This is a block quote, as the margin is inset.

{.margin_left "24px"}This paragraph is inset yet again.

Attributed text can be loaded as a Unicode string. In addition, any character
can be inserted given its Unicode code point in numeric form, either in
decimal:

This text is Copyright {#169}.

or hexadecimal:

This text is Copyright {#xa9}.

The characters { and } can be escaped by duplicating them:

Attributed text uses many "{{" and "}}" characters.

Use the decode_attributed function to decode attributed text into a
FormattedDocument:

document = pyglet.text.decode_attributed('Hello, {bold True}world')

HTML

While attributed text gives access to all of the features of
FormattedDocument and
TextLayout(), it is quite verbose and difficult
produce text in. For convenience, pyglet provides an HTML 4.01 decoder that
can translate a small, commonly used subset of HTML into a
FormattedDocument.

Note that the decoder does not preserve the structure of the HTML document –
all notion of element hierarchy is lost in the translation, and only the
visible style changes are preserved.

The following example uses decode_html() to create a
FormattedDocument from a string of HTML:

document = pyglet.text.decode_html('Hello, world')

The following elements are supported:

B BLOCKQUOTE BR CENTER CODE DD DIR DL EM FONT H1 H2 H3 H4 H5 H6 I IMG KBD
LI MENU OL P PRE Q SAMP STRONG SUB SUP TT U UL VAR

The style attribute is not supported, so font sizes must be given as HTML
logical sizes in the range 1 to 7, rather than as point sizes. The
corresponding font sizes, and some other stylesheet parameters, can be
modified by subclassing HTMLDecoder.

Custom elements

Graphics and other visual elements can be inserted inline into a document
using insert_element().
For example, inline elements are used to render HTML images included with
the IMG tag. There is currently no support for floating or
absolutely-positioned elements.

Elements must subclass InlineElement
and override the place and remove methods. These methods are called by
TextLayout() when the element becomes
or ceases to be visible. For TextLayout()
and ScrollableTextLayout,
this is when the element is added or removed from the document;
but for IncrementalTextLayout the methods
are also called as the element scrolls in and out of the viewport.

The constructor of InlineElement
gives the width and height (separated into the ascent above the baseline,
and descent below the baseline) of the element.

Typically an InlineElement subclass will
add graphics primitives to the layout’s graphics batch; though applications
may choose to simply record the position of the element and render it
separately.

The position of the element in the document text is marked with a NUL
character (U+0000) placeholder. This has the effect that inserting an element
into a document increases the length of the document text by one. Elements
can also be styled as if they were ordinary character text, though the layout
ignores any such style attributes.

User-editable text

While pyglet does not come with any complete GUI widgets for applications to
use, it does implement many of the features required to implement interactive
text editing. These can be used as a basis for a more complete GUI system, or
to present a simple text entry field, as demonstrated in the
examples/text_input.py example.

IncrementalTextLayout should always be used for
text that can be edited by the user.
This class maintains information about the placement of glyphs on screen,
and so can map window coordinates to a document position and vice-versa.
These methods are
get_position_from_point(),
get_point_from_position(),
get_line_from_point(),
get_point_from_line(),
get_line_from_position(),
get_position_from_line(),
get_position_on_line()
and
get_line_count().

The viewable rectangle of the document can be adjusted using a document
position instead of a scrollbar using the
ensure_line_visible() and
ensure_x_visible() methods.

IncrementalTextLayout can display a current
text selection by temporarily overriding the foreground and background colour
of the selected text. The
selection_start and
selection_end properties
give the range of the selection, and
selection_color and
selection_background_color
the colors to use (defaulting to white on blue).

The Caret class implements an insertion caret
(cursor) for IncrementalTextLayout.
This includes displaying the blinking caret at the correct location,
and handling keyboard, text and mouse events.
The behaviour in response to the events is very similar to the system GUIs
on Windows, Mac OS X and GTK. Using Caret
frees you from using the IncrementalTextLayout
methods described above directly.

The following example creates a document, a layout and a caret and attaches
the caret to the window to listen for events:

import pyglet

window = pyglet.window.Window()
document = pyglet.text.document.FormattedDocument()
layout = pyglet.text.layout.IncrementalTextLayout(document, width, height)
caret = pyglet.text.caret.Caret(layout)
window.push_handlers(caret)

When the layout is drawn, the caret will also be drawn, so this example is
nearly complete enough to display the user input. However, it is suitable for
use when only one editable text layout is to be in the window. If multiple
text widgets are to be shown, some mechanism is needed to dispatch events to
the widget that has keyboard focus. An example of how to do this is given in
the examples/text_input.py example program.

Loading system fonts

The layout classes automatically load fonts as required. You can also
explicitly load fonts to implement your own layout algorithms.

To load a font you must know its family name. This is the name displayed in
the font dialog of any application. For example, all operating systems
include the Times New Roman font. You must also specify the font size to
load, in points:

Load "Times New Roman" at 16pt
times = pyglet.font.load('Times New Roman', 16)

Bold and italic variants of the font can specified with keyword parameters:

times_bold = pyglet.font.load('Times New Roman', 16, bold=True)
times_italic = pyglet.font.load('Times New Roman', 16, italic=True)
times_bold_italic = pyglet.font.load('Times New Roman', 16,
 bold=True, italic=True)

For maximum compatibility on all platforms, you can specify a list of font
names to load, in order of preference. For example, many users will have
installed the Microsoft Web Fonts pack, which includes Verdana, but this
cannot be guaranteed, so you might specify Arial or Helvetica as
suitable alternatives:

sans_serif = pyglet.font.load(('Verdana', 'Helvetica', 'Arial'), 16)

Also you can check for the availability of a font using
pyglet.font.have_font():

Will return True
pyglet.font.have_font('Times New Roman')

Will return False
pyglet.font.have_font('missing-font-name')

If you do not particularly care which font is used, and just need to display
some readable text, you can specify None as the family name, which will load
a default sans-serif font (Helvetica on Mac OS X, Arial on Windows XP):

sans_serif = pyglet.font.load(None, 16)

Font sizes

When loading a font you must specify the font size it is to be rendered at, in
points. Points are a somewhat historical but conventional unit used in both
display and print media. There are various conflicting definitions for the
actual length of a point, but pyglet uses the PostScript definition: 1 point =
1/72 inches.

Font resolution

The actual rendered size of the font on screen depends on the display
resolution. pyglet uses a default DPI of 96 on all operating systems. Most
Mac OS X applications use a DPI of 72, so the font sizes will not match up on
that operating system. However, application developers can be assured that
font sizes remain consistent in pyglet across platforms.

The DPI can be specified directly in the pyglet.font.load()
function, and as an argument to the TextLayout()
constructor.

Determining font size

Once a font is loaded at a particular size, you can query its pixel size with
the attributes:

Font.ascent
Font.descent

These measurements are shown in the diagram below.

[image: ../_images/font_metrics.png]

Font metrics. Note that the descent is usually negative as it descends
below the baseline.

You can calculate the distance between successive lines of text as:

ascent - descent + leading

where leading is the number of pixels to insert between each line of text.

Loading custom fonts

You can supply a font with your application if it’s not commonly installed on
the target platform. You should ensure you have a license to distribute the
font – the terms are often specified within the font file itself, and can be
viewed with your operating system’s font viewer.

Loading a custom font must be performed in two steps:

	Let pyglet know about the additional font or font files.

	Load the font by its family name.

For example, let’s say you have the Action Man font in a file called
action_man.ttf. The following code will load an instance of that font:

pyglet.font.add_file('action_man.ttf')
action_man = pyglet.font.load('Action Man')

Similarly, once the font file has been added, the font name can be specified
as a style on a label or layout:

label = pyglet.text.Label('Hello', font_name='Action Man')

Fonts are often distributed in separate files for each variant. Action Man
Bold would probably be distributed as a separate file called
action_man_bold.ttf; you need to let pyglet know about this as well:

font.add_file('action_man_bold.ttf')
action_man_bold = font.load('Action Man', bold=True)

Note that even when you know the filename of the font you want to load, you
must specify the font’s family name to pyglet.font.load().

You need not have the file on disk to add it to pyglet; you can specify any
file-like object supporting the read method. This can be useful for
extracting fonts from a resource archive or over a network.

If the custom font is distributed with your application, consider using the
Application resources.

Supported font formats

pyglet can load any font file that the operating system natively supports,
but not all formats all fully supported.

The list of supported formats is shown in the table below.

	Font Format

	Windows

	Mac OS X

	Linux (FreeType)

	TrueType (.ttf)

	X

	X

	X

	PostScript Type 1 (.pfm, .pfb)

	X

	X

	X

	Windows Bitmap (.fnt)

	X

	
	X

	Mac OS X Data Fork Font (.dfont)

	
	X

	

	OpenType (.otf) [1]

	
	X

	

	X11 font formats PCF, BDF, SFONT

	
	
	X

	Bitstream PFR (.pfr)

	
	
	X

[1]
All OpenType fonts are backward compatible with TrueType, so
while the advanced OpenType features can only be rendered with
Mac OS X, the files can be used on any platform. pyglet
does not currently make use of the additional kerning and
ligature information within OpenType fonts.
In Windows a few will use the variant DEVICE_FONTTYPE and may
render bad, by example inconsolata.otf, from
http://levien.com/type/myfonts/inconsolata.html

Some of the fonts found in internet may miss information for some operating
systems, others may have been written with work in progress tools not fully
compliant with standards. Using the font with text editors or fonts viewers
can help to determine if the font is broken.

OpenGL font considerations

Text in pyglet is drawn using textured quads. Each font maintains a set of
one or more textures, into which glyphs are uploaded as they are needed. For
most applications this detail is transparent and unimportant, however some of
the details of these glyph textures are described below for advanced users.

Context affinity

When a font is loaded, it immediately creates a texture in the current
context’s object space. Subsequent textures may need to be created if there
is not enough room on the first texture for all the glyphs. This is done when
the glyph is first requested.

pyglet always assumes that the object space that was active when the font was
loaded is the active one when any texture operations are performed. Normally
this assumption is valid, as pyglet shares object spaces between all contexts
by default. There are a few situations in which this will not be the case,
though:

	When explicitly setting the context share during context creation.

	When multiple display devices are being used which cannot support a shared
context object space.

In any of these cases, you will need to reload the font for each object space
that it’s needed in. pyglet keeps a cache of fonts, but does so
per-object-space, so it knows when it can reuse an existing font instance or
if it needs to load it and create new textures. You will also need to ensure
that an appropriate context is active when any glyphs may need to be added.

Blend state

The glyph textures have an internal format of GL_ALPHA, which provides
a simple way to recolour and blend antialiased text by changing the
vertex colors. pyglet makes very few assumptions about the OpenGL state, and
will not alter it besides changing the currently bound texture.

The following blend state is used for drawing font glyphs:

from pyglet.gl import *
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glEnable(GL_BLEND)

All glyph textures use the GL_TEXTURE_2D target, so you should ensure that
a higher priority target such as GL_TEXTURE_3D is not enabled before
trying to render text.

Application resources

Previous sections in this guide have described how to load images, media and
text documents using pyglet. Applications also usually have the need to load
other data files: for example, level descriptions in a game, internationalised
strings, and so on.

Programmers are often tempted to load, for example, an image required by their
application with:

image = pyglet.image.load('logo.png')

This code assumes logo.png is in the current working directory.
Unfortunately the working directory is not necessarily the same as the
directory containing the application script files.

	Applications started from the command line can start from an arbitrary
working directory.

	Applications bundled into an egg, Mac OS X package or Windows executable
may have their resources inside a ZIP file.

	The application might need to change the working directory in order to
work with the user’s files.

A common workaround for this is to construct a path relative to the script
file instead of the working directory:

import os

script_dir = os.path.dirname(__file__)
path = os.path.join(script_dir, 'logo.png')
image = pyglet.image.load(path)

This, besides being tedious to write, still does not work for resources within
ZIP files, and can be troublesome in projects that span multiple packages.

The pyglet.resource module solves this problem elegantly:

image = pyglet.resource.image('logo.png')

The following sections describe exactly how the resources are located, and how
the behaviour can be customised.

Loading resources

Use the pyglet.resource module when files shipped with the
application need to be loaded. For example, instead of writing:

data_file = open('file.txt')

use:

data_file = pyglet.resource.file('file.txt')

There are also convenience functions for loading media files for pyglet. The
following table shows the equivalent resource functions for the standard file
functions.

	File function

	Resource function

	Type

	open

	pyglet.resource.file()

	File-like object

	pyglet.image.load()

	pyglet.resource.image()

	Texture or TextureRegion

	pyglet.image.load()

	pyglet.resource.texture()

	Texture

	pyglet.image.load_animation()

	pyglet.resource.animation()

	Animation

	pyglet.media.load()

	pyglet.resource.media()

	Source

	
pyglet.text.load()

mimetype = text/plain

	pyglet.resource.text()

	UnformattedDocument

	
pyglet.text.load()

mimetype = text/html

	pyglet.resource.html()

	FormattedDocument

	
pyglet.text.load()

mimetype = text/vnd.pyglet-attributed

	pyglet.resource.attributed()

	FormattedDocument

	pyglet.font.add_file()

	pyglet.resource.add_font()

	None

pyglet.resource.texture() is for loading stand-alone textures.
This can be useful when using the texture for a 3D model, or generally
working with OpenGL directly.

pyglet.resource.image() is optimised for loading sprite-like
images that can have their texture coordinates adjusted.
The resource module attempts to pack small images into larger texture atlases
(explained in Texture bins and atlases) for efficient rendering
(which is why the return type of this function can be
TextureRegion).
It is also advisable to use the texture atlas classes directly if you wish
to have different achor points on multiple copies of the same image.
This is because when loading an image more than once, you will actually get
the same object back. You can still use the resource module for getting
the image location, and described in the next section.

Resource locations

Some resource files reference other files by name. For example, an HTML
document can contain elements. In this case your
application needs to locate image.png relative to the original HTML file.

Use pyglet.resource.location() to get a
Location object describing the location of an
application resource. This location might be a file system
directory or a directory within a ZIP file.
The Location object can directly open files by
name, so your application does not need to distinguish between these cases.

In the following example, a thumbnails.txt file is assumed to contain a
list of image filenames (one per line), which are then loaded assuming the
image files are located in the same directory as the thumbnails.txt file:

thumbnails_file = pyglet.resource.file('thumbnails.txt', 'rt')
thumbnails_location = pyglet.resource.location('thumbnails.txt')

for line in thumbnails_file:
 filename = line.strip()
 image_file = thumbnails_location.open(filename)
 image = pyglet.image.load(filename, file=image_file)
 # Do something with `image`...

This code correctly ignores other images with the same filename that might
appear elsewhere on the resource path.

Specifying the resource path

By default, only the script home directory is searched (the directory
containing the __main__ module).
You can set pyglet.resource.path to a list of locations to
search in order. This list is indexed, so after modifying it you will
need to call pyglet.resource.reindex().

Each item in the path list is either a path relative to the script home, or
the name of a Python module preceded with an “at” symbol (@). For example,
if you would like to package all your resources in a res directory:

pyglet.resource.path = ['res']
pyglet.resource.reindex()

Items on the path are not searched recursively, so if your resource directory
itself has subdirectories, these need to be specified explicitly:

pyglet.resource.path = ['res', 'res/images', 'res/sounds', 'res/fonts']
pyglet.resource.reindex()

The entries in the resource path always use forward slash characters as path
separators even when the operating systems using a different character.

Specifying module names makes it easy to group code with its resources. The
following example uses the directory containing the hypothetical
gui.skins.default for resources:

pyglet.resource.path = ['@gui.skins.default', '.']
pyglet.resource.reindex()

Multiple loaders

A Loader encapsulates a complete resource path
and cache. This lets your application cleanly separate resource loading of
different modules.
Loaders are constructed for a given search path, andnexposes the same methods
as the global pyglet.resource module functions.

For example, if a module needs to load its own graphics but does not want to
interfere with the rest of the application’s resource loading, it would create
its own Loader with a local search path:

loader = pyglet.resource.Loader(['@' + __name__])
image = loader.image('logo.png')

This is particularly suitable for “plugin” modules.

You can also use a Loader instance to load a set
of resources relative to some user-specified document directory.
The following example creates a loader for a directory specified on the
command line:

import sys
home = sys.argv[1]
loader = pyglet.resource.Loader(script_home=[home])

This is the only way that absolute directories and resources not bundled with
an application should be used with pyglet.resource.

Saving user preferences and data

Because Python applications can be distributed in several ways, including
within ZIP files, it is usually not feasible to save user preferences, high
score lists, and so on within the application directory (or worse, the working
directory). The resource module provides functions for assisting with this.

The pyglet.resource.get_settings_path() function returns a directory
suitable for writing configuration related data. The directory used follows
the operating system’s convention:

	~/.config/ApplicationName/ on Linux (depends on XDG_CONFIG_HOME environment variable).

	$HOME\Application Settings\ApplicationName on Windows

	~/Library/Application Support/ApplicationName on Mac OS X

The pyglet.resource.get_data_path() function returns a directory
suitable for writing arbitray data, such as save files. The directory used follows
the operating system’s convention:

	~/.local/share/ApplicationName/ on Linux (depends on XDG_DATA_HOME environment variable).

	$HOME\Application Settings\ApplicationName on Windows

	~/Library/Application Support/ApplicationName on Mac OS X

The returned directory names are not guaranteed to exist – it is the
application’s responsibility to create them. The following example opens a high
score list file for a game called “SuperGame” into the data directory:

import os

dir = pyglet.resource.get_data_path('SuperGame')
if not os.path.exists(dir):
 os.makedirs(dir)
filename = os.path.join(dir, 'highscores.txt')
file = open(filename, 'wt')

Shaders and Rendering

At the lowest level, pyglet uses OpenGL to draw graphics in program windows.
The OpenGL interface is exposed via the pyglet.gl module
(see The OpenGL interface).

For new users, however, using the OpenGL interface directly can be daunting.
The pyglet.graphics module provides high level abstractions that
use vertex arrays and vertex buffer objects internally to deliver high
performance. For advanced users, these abstractions can still help to avoid
a lot of the OpenGL boilerplate code that would otherwise be necessary to write
yourself.

pyglet’s rendering abstractions consist of three major components:
“VertexDomains”, “VertexLists”, and “ShaderProgram”. These will be explained
in more detail in the following sections, but a rough overview is as follows:

	ShaderProgram are at the highest level, and are simple abstractions over
standard OpenGL Shader Programs. pyglet does full attribute and uniform
introspection, and provides methods for automatically generating buffers
that match the attribute formats.

	VertexDomains at at the lowest level, and users will generally not need to
interact with them directly. They maintain ownership of raw OpenGL vertex
array buffers, that match a specific collection of vertex attributes.
Buffers are resized automatically as needed. Access to these buffers is
usually not done directly, but instead through the use of VertexLists.

	VertexLists sit in-between the VertexDomains and the ShaderProgram. They
provide a simple “view” into a portion of a VertexDomain’s buffers. A
ShaderProgram is able to generate VertexLists directly.

In summary, the process is as follows:

	User creates a ShaderProgram. Vertex attribute metadata is introspected
automatically.

	User creates a new VertexList with the vertex_list() method.
Users do not need to worry about creating the internal buffers themselves.

	When the VertexList is created in step 2, pyglet automatically matches the
ShaderProgram’s attributes to an appropriate VertexDomain. (If no existing
domain is available, a new one is created). A VertexList is generated from
the matching VertexDomain, and returned.

Working with Shaders

Drawing anything in modern OpenGL requires a Shader Program. Working with
Shader resources directly can be tedious, so the pyglet.graphics.shader
module provides simplified (but robust) abstractions.

See the OpenGL Programming SDK [http://www.opengl.org/sdk] for more information on Shaders and the
OpenGL Shader Language (GLSL).

Creating a Shader Program

To create a Shader Program, first prepare the GLSL source as Python strings.
This can be loaded from disk, or simply defined inside of your project. Here
is simplistic Vertex and Fragment source:

vertex_source = """#version 150 core
 in vec2 position;
 in vec4 colors;
 out vec4 vertex_colors;

 uniform mat4 projection;

 void main()
 {
 gl_Position = projection * vec4(position, 0.0, 1.0);
 vertex_colors = colors;
 }
"""

fragment_source = """#version 150 core
 in vec4 vertex_colors;
 out vec4 final_color;

 void main()
 {
 final_color = vertex_colors;
 }
"""

The source strings are then used to create Shader objects, which are
then linked together in a ShaderProgram. Shader objects are automatically
detached after linking the ShaderProgram, so they can be discarded
afterwards (or used again in other ShaderProgram):

from pyglet.graphics.shader import Shader, ShaderProgram

vert_shader = Shader(vertex_source, 'vertex')
frag_shader = Shader(fragment_source, 'fragment')
program = ShaderProgram(vert_shader, frag_shader)

ShaderProgram internally introspects on creation. There are
several properties that can be queried to inspect the various vertex attributes, uniforms,
and uniform blocks that are available. For example, the uniforms and attributes properties
will return dictionaries showing the metadata for these objects:

>>> for attribute in program.attributes.items():
... print(attribute)
...
('position', {'type': 35664, 'size': 1, 'location': 0, 'count': 2, 'format': 'f'})
('colors', {'type': 35666, 'size': 1, 'location': 1, 'count': 4, 'format': 'f'})

>>> for uniform in program.uniforms.items():
... print(uniform)
...
('time', {'location': 2, 'length': 1, 'size': 1})

Note

Most OpenGL drivers will optimize shaders during compilation. If an
attribute or a uniform is not being used, it will often be optimized out.

Uniforms

Uniforms are variables that can be modified after a ShaderProgram has been compiled
to change functionality during run time.

Warning

When setting uniforms, the program must be binded at the time of setting. This restriction does not exist in
OpenGL 4.1+, but if you plan to support older contexts (such as 3.3), this must be accounted for.

Uniforms can be accessed as a key on the ShaderProgram
itself. For example if your uniform in your shader is:

uniform float time;

Then you can set (or get) the value using the uniform name as a key:

program['time'] = delta_time

Uniform Buffer Objects (Uniform Blocks)

Pyglet also offers access to Uniform Buffer Objects or Uniform Blocks. These are special objects that can be used to
share uniforms between different programs. For example, by default, Pyglet’s projection and view matrix
are both contained in the WindowBlock uniform block. Which looks like this in the vertex shader:

uniform WindowBlock
{
 mat4 projection;
 mat4 view;
} window;

You can view what uniform blocks exist in a ShaderProgram using the uniform_blocks
property. This is a dictionary containing a Uniform Block name key to a UniformBlock
object value. In the above example, the name would be WindowBlock while the window identifier is used in the GLSL
shader itself.

To modify the uniforms in a UniformBlock, you must first create a
UniformBufferObject using the
create_ubo() method.:

ubo = program.uniform_blocks['WindowBlock'].create_ubo()

The UniformBufferObject can then be used, and acts as a context manager for easy
access to its uniforms:

with ubo as window_block:
 window_block.projection[:] = new_matrix

Creating Vertex Lists

Once you have a ShaderProgram, you need vertex data to render. As an easier alternative
to manually creating and managing vertex buffers, pyglet provides a high level
VertexList object. VertexLists are abstractions
over OpenGL buffers, with properties for easily accessing the arrays of attribute data.

The ShaderProgram provides the following two methods:
vertex_list()
and
vertex_list_indexed()

At a minimum, you must provide a count and mode when creating a VertexList.
The count is simply the number of vertices you wish to create. The mode is
the OpenGL primitive type. A group and batch parameters are also accepted
(described below).

The mode should be passed using one of the following constants:

	pyglet.gl.GL_POINTS

	pyglet.gl.GL_LINES

	pyglet.gl.GL_LINE_STRIP

	pyglet.gl.GL_TRIANGLES

	pyglet.gl.GL_TRIANGLE_STRIP

When using GL_LINE_STRIP and GL_TRIANGLE_STRIP, care must be taken to
insert degenerate vertices at the beginning and end of each vertex list.
For example, given the vertex list:

A, B, C, D

the correct vertex list to provide the vertex list is:

A, A, B, C, D, D

Note

Because of the way the high level API renders multiple primitives with
shared state, GL_POLYGON, GL_LINE_LOOP and GL_TRIANGLE_FAN
cannot be used — the results are undefined.

Create a VertexList with three vertices, without initial data:

vlist = program.vertex_list(3, pyglet.gl.GL_TRIANGLES)

From examining the ShaderProgram.attributes above, we know position and colors
attributes are available. The underlying arrays can be accessed directly:

>>> vlist.position
<pyglet.graphics.shader.c_float_Array_6 object at 0x7f6d3a30b1c0>
>>> vlist.colors
<pyglet.graphics.shader.c_float_Array_12 object at 0x7f6d3a30b0c0>
>>>
>>> vlist.position[:]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>>
>>> vlist.colors[:]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

The position data is a float array with 6 elements. This attribute is a vec2
in the shader. Looking at the attribute metadata above, we can confirm that
count=2. Since the VertexList was created with 3 vertices, the length of the array
is simply 3 * 2 = 6. Likewise, the colors attribute is defined as a vec4 in the
shader, so it’s simply 3 * 4 = 12.

This VertexList was created without any initial data, but it can be set (or updated)
on the property by passing a list or tuple of the correct length. For example:

vlist.position = (100, 300, 200, 250, 200, 350)
or slightly faster to update in-place:
vlist.position[:] = (100, 300, 200, 250, 200, 350)

The default data format is single precision floats, but it is possible to specify a
format using a “format string”. This is passed on creation as a Python keyword
argument. The following formats are available:

	Format

	Type

	Python type

	"b"

	Signed byte

	int

	"B"

	Unsigned byte

	int

	"s"

	Signed short

	int

	"S"

	Unsigned short

	int

	"i"

	Signed int

	int

	"I"

	Unsigned int

	int

	"f"

	Single precision float

	float

	"d"

	Double precision float

	float

For example, if you would like to pass the position data as a signed int, you
can pass the “i” format string as a Python keyword argument:

vlist = program.vertex_list(3, pyglet.gl.GL_TRIANGLES, position='i')

By appending "n" to the format string, you can also specify that the passed
data should be “normalized” to the range [0, 1]. The value is used as-is if
the data type is floating-point. If the data type is byte, short or int, the value
is divided by the maximum value representable by that type. For example, unsigned
bytes are divided by 255 to get the normalised value.

A common case is to use normalized unsigned bytes for the color data. Simply
pass “Bn” as the format:

vlist = program.vertex_list(3, pyglet.gl.GL_TRIANGLES, colors='Bn')

Passing Initial Data

Rather than setting the data after creation of a VertexList, you can also
easily pass initial arrays of data on creation. You do this by passing the format
and the data as a tuple, using a keyword argument as above. To set the position
and color data on creation:

vlist = program.vertex_list(3, pyglet.gl.GL_TRIANGLES,
 position=('f', (200, 400, 300, 350, 300, 450)),
 colors=('Bn', (255, 0, 0, 255, 0, 255, 0, 255, 75, 75, 255, 255),)

Indexed Rendering

Vertices can also be drawn out of order and more than once by using the
indexed rendering. This requires a list of integers giving the indices into
the vertex data. You also use the
vertex_list_indexed() method
instead of vertex_list(). The
API is almost identical, except for the required index list.

The following example creates four vertices, and provides their positional data.
By passing an index list of [0, 1, 2, 0, 2, 3], we creates two adjacent triangles,
and the shared vertices are reused:

vlist = program.vertex_list_indexed(4, pyglet.gl.GL_TRIANGLES,
 [0, 1, 2, 0, 2, 3],
 position=('i', (100, 100, 150, 100, 150, 150, 100, 150)),
)

Note that the first argument gives the number of vertices in the data, not the
number of indices (which is implicit on the length of the index list given in
the third argument).

Resource Management

VertexLists reference data that is stored on the GPU, but they do not own
any data themselves. For this reason, it’s not strictly necessary to keep a
reference to a VertexList after creating it. If you wish to delete the data
from the GPU, however, it can only be done with the VertexList.delete()
method. Likewise, you can only update a VertexList’s vertex data if you have
kept a reference to it. For that reason, you should keep a reference to any
objects that you might want to modify or delete from your scene after creation.

Batched rendering

For optimal OpenGL performance, you should render as many vertex lists as
possible in a single draw call. Internally, pyglet uses
VertexDomain and
IndexedVertexDomain to keep VertexLists
that share the same attribute formats in adjacent areas of memory.
The entire domain of vertex lists can then be drawn at once, without calling
draw() on each individual
list.

It is quite difficult and tedious to write an application that manages vertex
domains itself, though. In addition to maintaining a vertex domain for each
ShaderProgram and set of attribute formats, domains must also be separated by
primitive mode and required OpenGL state.

The Batch class implements this functionality,
grouping related vertex lists together and sorting by OpenGL state
automatically. A batch is created with no arguments:

batch = pyglet.graphics.Batch()

To use a Batch, you simply pass it as a (keyword) argument when creating
any of pyglet’s high level objects. For example:

vlist = program.vertex_list(3, pyglet.gl.GL_TRIANGLES, batch=batch)
sprite = pyglet.sprite.Sprite(img, x, y, batch=batch)

To draw all objects contained in the batch at once:

batch.draw()

For batches containing many objects, this gives a significant performance
improvement over drawing individually. It’s generally recommended to always
use Batches.

Setting the OpenGL state

Before drawing in OpenGL, it’s necessary to set certain state. You might need
to activate a ShaderProgram, or bind a Texture. For example, to enable and bind
a texture requires the following before drawing:

from pyglet.gl import *
glActiveTexture(GL_TEXTURE0)
glBindTexture(texture.target, texture.id)

With a Group these state changes can be
encapsulated and associated with the vertex lists they affect.
Subclass Group and override the Group.set_state
and Group.unset_state methods to perform the required state changes:

class CustomGroup(pyglet.graphics.Group):
 def __init__(self, texture, shaderprogram):
 super().__init__()
 self.texture = texture
 self.program = shaderprogram

 def set_state(self):
 self.program.use()
 glActiveTexture(GL_TEXTURE0)
 glBindTexture(self.texture.target, self.texture.id)

 def unset_state(self):
 self.program.stop()

An instance of this group can now be attached to vertex lists:

custom_group = CustomGroup()
vertex_list = program.vertex_list(2, pyglet.gl.GL_POINTS, batch, custom_group,
 position=('i', (10, 15, 30, 35)),
 colors=('Bn', (0, 0, 255, 0, 255, 0))
)

The Batch ensures that the appropriate
set_state and unset_state methods are called before and after
the vertex lists that use them.

Shader state

ShaderProgram can be binded (use())
and unbinded (stop()) manually. As a convenience method, it can also act
as a context manager that handles the binding and unbinding process automatically. This may be useful if you want to
ensure the state of a ShaderProgram is active during some edge case scenarios while
also being more Pythonic.

For example:

with shaderprogram as my_shader:
 my_shader.my_uniform = 1.0

Hierarchical state

Groups have a parent attribute that allows them to be implicitly organised
in a tree structure. If groups B and C have parent A, then the
order of set_state and unset_state calls for vertex lists in a batch
will be:

A.set_state()

 B.set_state()
 # Draw B vertices
 B.unset_state()

 C.set_state()
 # Draw C vertices
 C.unset_state()

A.unset_state()

This is useful to group state changes into as few calls as possible. For
example, if you have a number of vertex lists that all need texturing enabled,
but have different bound textures, you could enable and disable texturing in
the parent group and bind each texture in the child groups. The following
example demonstrates this:

class TextureEnableGroup(pyglet.graphics.Group):
 def set_state(self):
 glActiveTexture(GL_TEXTURE0)

 def unset_state(self):
 # not necessary

texture_enable_group = TextureEnableGroup()

class TextureBindGroup(pyglet.graphics.Group):
 def __init__(self, texture):
 super().__init__(parent=texture_enable_group)
 assert texture.target = GL_TEXTURE_2D
 self.texture = texture

 def set_state(self):
 glBindTexture(GL_TEXTURE_2D, self.texture.id)

 def unset_state(self):
 # not required

 def __eq__(self, other):
 return (self.__class__ is other.__class__ and
 self.texture.id == other.texture.id and
 self.texture.target == other.texture.target and
 self.parent == other.parent)

 def __hash__(self):
 return hash((self.texture.id, self.texture.target))

program.vertex_list_indexed(4, GL_TRIANGLES, indices, batch, TextureBindGroup(texture1))
program.vertex_list_indexed(4, GL_TRIANGLES, indices, batch, TextureBindGroup(texture2))
program.vertex_list_indexed(4, GL_TRIANGLES, indices, batch, TextureBindGroup(texture1))

Note

The __eq__ method on the group allows the Batch
to automatically merge the two identical TextureBindGroup instances.
For optimal performance, always take care to ensure your custom Groups have
correct __eq__ and __hash__ methods defined.

Drawing order

VertexDomain does not attempt
to keep vertex lists in any particular order. So, any vertex lists sharing
the same primitive mode, attribute formats and group will be drawn in an
arbitrary order. However, Group objects do
have an order parameter that allows Batch
to sort objects sharing the same parent. In summary, inside of a Batch:

	Groups are sorted by their parent (if any). (Parent Groups may also be ordered).

	Groups are sorted by their order attribute. There is one draw call per order level.

A common use pattern is to create several Groups for each level in your scene.
For instance, a “background” group that is drawn before the “foreground” group:

background = pyglet.graphics.Group(0)
foreground = pyglet.graphics.Group(1)

pyglet.sprite.Sprite(image, batch=batch, group=background)
pyglet.sprite.Sprite(image, batch=batch, group=foreground)

By combining hierarchical groups with ordered groups it is possible to
describe an entire scene within a single Batch,
which then renders it as efficiently as possible.

Visibility

Groups have a boolean visible property. By setting this to False, any
objects in that Group will no longer be rendered. A common use case is to
create a parent Group specifically for this purpose, often when combined
with custom ordering (as described above). For example, you might create
a “HUD” Group, which is ordered to draw in front of everything else. The
“HUD” Group’s visibility can then easily be toggled.

Batches and groups in other modules

The Sprite, Label,
TextLayout, and other default classes all
accept batch and group parameters in their constructors. This allows
you to add any of these higher-level pyglet drawables into arbitrary places in
your rendering code.

For example, multiple sprites can be grouped into a single batch and then
drawn at once, instead of calling Sprite.draw() on each one individually:

batch = pyglet.graphics.Batch()
sprites = [pyglet.sprite.Sprite(image, batch=batch) for i in range(100)]

batch.draw()

The group parameter can be used to set the drawing order (and hence which
objects overlap others) within a single batch, as described on the previous page.

In general you should batch all drawing objects into as few batches as
possible, and use groups to manage the draw order and other OpenGL state
changes for optimal performance.

If you are creating your own drawable
classes, consider adding batch and group parameters in a similar way.

Event dispatching & handling

The pyglet.event module provides a framework for uniformly dispatching
and handling events. For our purposes, an “event dispatcher” is an object that has
events it needs to notify other objects about, and an “event handler” is some code
(a function or method) that can be registered (or “attached”) to receive those events.

Event Dispatchers are created by subclassing the EventDispatcher
base class. Many of pyglet’s built-in modules, such as pyglet.window,
pyglet.media, pyglet.app, pyglet.text, pyglet.input,
pyglet.gui and others make use of this pattern. You can also reuse this in
your own classes easily.

Even handlers are simply functions or methods that are written to accept the same
arguments as the dispatched event. Event handlers can be registered or unregistered
during runtime. More than one handler can be registered to receive the same events,
which is described in the following sections. Event dispatchers can _optionally_ have
default handlers for some of their events. Your own handlers can replace these entirely,
or just be added on.

Setting event handlers

For an example, lets look at the Window class.
Window subclasses EventDispatcher
and, being an Window, has a variety of different events which it dispatches.
For instance, the pyglet.window.Window.on_resize() event. Every time a
resizeable Window is resized (and once when first created), this event is dispatched
with two parameters: (width, height). Therefore, an event handler for this event
should be written to accept these two values. For example:

def on_resize(width, height):
 pass

There are a few different ways in which event handlers can be attached to recieve them.
The simplest way is to directly attach the event handler to the corresponding attribute
on the object. This will completely replace the default event handler:

window = pyglet.window.Window()

def on_resize(width, height):
 # Set some custom projection

window.on_resize = on_resize

Sometimes replacing the default handler is desired, but not in all cases.
For example the default Window.on_resize handler is responsible for setting up a
orthographic 2D projection for drawing graphics. If you replace it entirely, you must
also handle setting the projection yourself.

Another way to replace a default event handler is when subclassing pyglet objects.
This is common do do with Window class, as shown in Subclassing Window.
If your methods have the same name as the default event, they will be replaced:

class MyWindow(pyglet.window.Window):
 def on_resize(self, width, height):
 # set a custom projection there

You can of course still call the default handler with super(), and then add
your custom code before/after that:

class MyWindow(pyglet.window.Window):

 def on_resize(self, width, height):
 super().on_resize(width, height)
 # do something else

The event decorator

Instead of replacing default handlers, you can just also add an additional handler.
pyglet provides a shortcut using the event
decorator. Your custom event handler will run, followed by the default event handler:

window = window.Window()

@window.event
def on_resize(width, height):
 print(f"Window was resized to: {width}x{height}")

or if your handler has a different name, pass the event name to the decorator:

@window.event('on_resize')
def my_resize_handler(width, height):
 pass

In most simple cases, the event
decorator is most convienent. One limitation of using the decorator,
however, is that you can only add one additional event handler.
If you want to add multiple additional event handlers, the next section
describes how to accomplish that.

Stacking event handlers

It is often convenient to attach more than one event handler for an event.
EventDispatcher allows you to stack event handlers
upon one another, rather than replacing them outright. The event will
propagate from the top of the stack to the bottom, but can be stopped
by any handler along the way by returning pyglet.event.EVENT_HANDLED.

To push an event handler onto the stack,
use the push_handlers() method:

def on_key_press(symbol, modifiers):
 if symbol == key.SPACE:
 fire_laser()

window.push_handlers(on_key_press)

One use for pushing handlers instead of setting them is to handle different
parameterisations of events in different functions. In the above example, if
the spacebar is pressed, the laser will be fired. After the event handler
returns control is passed to the next handler on the stack, which on a
Window is a function that checks for the ESC key
and sets the has_exit attribute if it is pressed. By pushing the event
handler instead of setting it, the application keeps the default behaviour
while adding additional functionality.

You can prevent the remaining event handlers in the stack from receiving the
event by returning a true value. The following event handler, when pushed
onto the window, will prevent the escape key from exiting the program:

def on_key_press(symbol, modifiers):
 if symbol == key.ESCAPE:
 return True

window.push_handlers(on_key_press)

You can push more than one event handler at a time, which is especially useful
when coupled with the pop_handlers()
function. In the following example, when the game starts some additional
event handlers are pushed onto the stack. When the game ends (perhaps
returning to some menu screen) the handlers are popped off in one go:

def start_game():
 def on_key_press(symbol, modifiers):
 print('Key pressed in game')
 return True

 def on_mouse_press(x, y, button, modifiers):
 print('Mouse button pressed in game')
 return True

 window.push_handlers(on_key_press, on_mouse_press)

def end_game():
 window.pop_handlers()

Note that you do not specify which handlers to pop off the stack – the entire
top “level” (consisting of all handlers specified in a single call to
push_handlers()) is popped.

You can apply the same pattern in an object-oriented fashion by grouping
related event handlers in a single class. In the following example, a
GameEventHandler class is defined. An instance of that class can be
pushed on and popped off of a window:

class GameEventHandler:
 def on_key_press(self, symbol, modifiers):
 print('Key pressed in game')
 return True

 def on_mouse_press(self, x, y, button, modifiers):
 print('Mouse button pressed in game')
 return True

game_handlers = GameEventHandler()

def start_game()
 window.push_handlers(game_handlers)

def stop_game()
 window.pop_handlers()

Note

In order to prevent issues with garbage collection, the
EventDispatcher class only holds weak
references to pushed event handlers. That means the following example
will not work, because the pushed object will fall out of scope and be
collected:

dispatcher.push_handlers(MyHandlerClass())

Instead, you must make sure to keep a reference to the object before pushing
it. For example:

my_handler_instance = MyHandlerClass()
dispatcher.push_handlers(my_handler_instance)

Creating your own event dispatcher

pyglet provides the Window,
Player, and other event dispatchers,
but exposes a public interface for creating and dispatching your own events.

The steps for creating an event dispatcher are:

	Subclass EventDispatcher

	Call the register_event_type()
class method on your subclass for each event your subclass will recognise.

	Call dispatch_event() to create and
dispatch an event as needed.

In the following example, a hypothetical GUI widget provides several events:

class ClankingWidget(pyglet.event.EventDispatcher):
 def clank(self):
 self.dispatch_event('on_clank')

 def click(self, clicks):
 self.dispatch_event('on_clicked', clicks)

 def on_clank(self):
 print('Default clank handler.')

ClankingWidget.register_event_type('on_clank')
ClankingWidget.register_event_type('on_clicked')

Event handlers can then be attached as described in the preceding sections:

widget = ClankingWidget()

@widget.event
def on_clank():
 pass

@widget.event
def on_clicked(clicks):
 pass

def override_on_clicked(clicks):
 pass

widget.push_handlers(on_clicked=override_on_clicked)

The EventDispatcher takes care of propagating the
event to all attached handlers or ignoring it if there are no handlers for
that event.

There is zero instance overhead on objects that have no event handlers
attached (the event stack is created only when required). This makes
EventDispatcher suitable for use even on light-weight
objects that may not always have handlers. For example,
Player is an
EventDispatcher even though potentially hundreds
of these objects may be created and destroyed each second, and most will
not need an event handler.

Implementing the Observer pattern

The Observer design pattern, also known as Publisher/Subscriber, is a
simple way to decouple software components. It is used extensively in many
large software projects; for example, Java’s AWT and Swing GUI toolkits and the
Python logging module; and is fundamental to any Model-View-Controller
architecture.

EventDispatcher can be used to easily add
observerable components to your application. The following example recreates
the ClockTimer example from Design Patterns (pages 300-301), though
without needing the bulky Attach, Detach and Notify methods:

The subject
class ClockTimer(pyglet.event.EventDispatcher):
 def tick(self):
 self.dispatch_event('on_update')

ClockTimer.register_event_type('on_update')

Abstract observer class
class Observer:
 def __init__(self, subject):
 subject.push_handlers(self)

Concrete observer
class DigitalClock(Observer):
 def on_update(self):
 pass

Concrete observer
class AnalogClock(Observer):
 def on_update(self):
 pass

timer = ClockTimer()
digital_clock = DigitalClock(timer)
analog_clock = AnalogClock(timer)

The two clock objects will be notified whenever the timer is “ticked”, though
neither the timer nor the clocks needed prior knowledge of the other. During
object construction any relationships between subjects and observers can be
created.

Simple Widgets & GUI

The pyglet.gui module provides a selection of widgets that can be used
to add user interface elements to your game or application. The selection is limited,
but should cover the most common use cases. For example: the configuration screen in
a game, or a set of toolbar buttons for a visualization program.

Widgets are internally constructed from other high level pyglet objects, and are
therefore fairly simple in design. They should blend in well with any pyglet project.
For example, Widgets are event handlers that receive keyboard and mouse events from the
Window. They can then in turn dispatch their own custom events, because they subclass
EventDispatcher. Widgets can take a Batch and Group, similar
to other pyglet objects, to allow for Batched rendering.

Before reading further, it is important to understand how event handling and dispatching
work in pyglet. If you have not yet done so, it is recommended that you first read
through the Event dispatching & handling section of the documentation. Widgets are by nature
very tightly associated with input events, so this is necessary to fully grasp their
usage.

Example code can be found in ‘examples/gui/widgets.py’ in the pyglet source repository.

Creating a Widget

Included Widgets are PushButton,
ToggleButton, Slider,
and TextEntry. They each have different arguments,
which will be shown in the API documentation. For our example, we will create a
‘PushButton’ widget, which requires you to provide at least two images. These two
images will visually represent the “pressed” and “depressed” states of the button.
This widget can also take an optional image for ‘hover’, but we’ll skip that for now:

pressed_img = pyglet.resource.image("button_pressed.png")
depressed_img = pyglet.resource.image("button_depressed.png")

pushbutton = pyglet.gui.PushButton(x=100, y=300, pressed=pressed_img, depressed=depressed_img, batch=batch)

We now have a PushButton widget, but it won’t yet do anything. It will be drawn on
screen, however, if included as part of a Batch as shown
above. In order to get the widget to react to the mouse, we need to set it to handle
events dispatched by the Window:

my_window.push_handlers(pushbutton)

The widget should now change appearance when you click on it. It will switch between
the provided images (pressed and depressed states). You can try adding the ‘hover’
image as well, for more visual feedback.

Now that our widget is receiving events, we can now take of the events that are
produced _by_ the widget. In this case, the PushButton widget dispatches two
events: ‘on_pressed’ and ‘on_released’. To wire these up, we simply set handlers
for them:

def my_on_press_handler():
 print("Button Pressed!")

def my_on_release_handler():
 print("Button Released...")

pushbutton.set_handler('on_press', my_on_press_handler)
pushbutton.set_handler('on_release', my_on_release_handler)

If we try this code, we should see messages printed to the console whenever we
press and release the button. You now have a way to make the widgets interact with
code in your project.

Other widgets are used in a similar way, but have different arguments depending
on their nature. Have a look at the API documentation for each one, and also
see the example in the source repository.

Frame objects

pyglet also provides an optional Frame object.
If you only need a few widgets at a time, then you can ignore this object.
However, if you several dozen widgets at once, you might find that it’s
wasteful to have every widget receiving the Window events at the same
time. This is where the Frame can be useful. Essentially, it acts as a
“middle-man” between the Window events and the Widgets. The Frame implements
a simple 2D spatial hash, which only passes on Window events to those Widgets
that are actually near the mouse pointer. This works well for Widgets that
generally care about mouse clicks and keyboard keys, but has some limitations
with drag-and-drop type events (more on that later).

Without a Frame, the general widget usage is:

	Make one or more Widget instances.

	Push the Wigets as event handlers on your Window.

	All Widgets receives all Window events.

If a Frame is introduced, the following occurs:

	Make a single Frame instance.

	Set the Frame as a handler for Window events.

	Make one or more Widget instances.

	Add your widget instances to the Frame.

	Only Widgets near the mouse pointer will recieve Window events.

This works quite well for most cases, but has some limitations. When using the
TextEntry widget, for instance, the widget may become unresponsive if you use
click-and-drag to select text, but your mouse pointer moves far enough
away from the widget. For this reason, Frames may not be suitable.

The Frame concept may be developed further in a future release, but for now it
serves a limited but useful purpose.

Custom widgets

For users who are interested in creating their own custom Widgets, the
WidgetBase base class is available for
subclassing. This base class has most of the relavent Window events
pre-defined, and is ready to be pushed as a handler. Custom subclasses
can then override whichever mouse or keyboard events they need, depending
on the application. Some additional helper properties are also provided.

It is recommended look through the pyglet source code to have a better
understanding of how this looks in practice. Because Widgets are made
up of other high-level pyglet objects, you might find that it’s not
terribly complex. The PushButton Widget, for example, is less than
100 lines of code. This may be a good starting point to design a custom
Widget for your specific use case.

This section may be expanded further in a future release.

Keeping track of time

pyglet’s clock module allows you to schedule functions
to run periodically, or for one-shot future execution.

Calling functions periodically

As discussed in the The application event loop section, pyglet
applications begin execution by entering into an application event loop:

pyglet.app.run()

Once called, this function doesn’t return until the application windows have
been closed. This may leave you wondering how to execute code while the
application is running.

Typical applications need to execute code in only three circumstances:

	A user input event (such as a mouse movement or key press) has been
generated. In this case the appropriate code can be attached as an
event handler to the window.

	An animation or other time-dependent system needs to update the position
or parameters of an object. We’ll call this a “periodic” event.

	A certain amount of time has passed, perhaps indicating that an
operation has timed out, or that a dialog can be automatically dismissed.
We’ll call this a “one-shot” event.

To have a function called periodically, for example, once every 0.1 seconds:

def update(dt):
 # ...

pyglet.clock.schedule_interval(update, 0.1)

The dt, or delta time parameter gives the number of “wall clock” seconds
elapsed since the last call of this function, (or the time the function was
scheduled, if it’s the first period). Due to latency, load and timer
imprecision, this might be slightly more or less than the requested interval.
Please note that the dt parameter is always passed to scheduled functions,
so be sure to expect it when writing functions even if you don’t need to
use it.

Scheduling functions with a set interval is ideal for animation, physics
simulation, and game state updates. pyglet ensures that the application does
not consume more resources than necessary to execute the scheduled functions
on time.

Rather than “limiting the frame rate”, as is common in other toolkits, simply
schedule all your update functions for no less than the minimum period your
application or game requires. For example, most games need not run at more
than 60Hz (60 times a second) for imperceptibly smooth animation, so the
interval given to schedule_interval() would be
1/60.0 (or more).

If you are writing a benchmarking program or otherwise wish to simply run at
the highest possible frequency, use schedule. This will call the function
as frequently as possible (and will likely cause heavy CPU usage):

def benchmark(dt):
 # ...

pyglet.clock.schedule(benchmark)

Note

By default pyglet window buffer swaps are synchronised to the display refresh
rate, so you may also want to disable vsync if you are running a benchmark.

For one-shot events, use schedule_once():

def dismiss_dialog(dt):
 # ...

Dismiss the dialog after 5 seconds.
pyglet.clock.schedule_once(dismiss_dialog, 5.0)

To stop a scheduled function from being called, including cancelling a
periodic function, use pyglet.clock.unschedule(). This could be
useful if you want to start running a function on schedule when a user provides
a certain input, and then unschedule it when another input is received.

Sprite movement techniques

As mentioned above, every scheduled function receives a dt parameter,
giving the actual “wall clock” time that passed since the previous invocation.
This parameter can be used for numerical integration.

For example, a non-accelerating particle with velocity v will travel
some distance over a change in time dt. This distance is calculated as
v * dt. Similarly, a particle under constant acceleration a will have
a change in velocity of a * dt.

The following example demonstrates a simple way to move a sprite across the
screen at exactly 10 pixels per second:

sprite = pyglet.sprite.Sprite(image)
sprite.dx = 10.0

def move_sprite(dt):
 sprite.x += sprite.dx * dt

pyglet.clock.schedule_interval(move_sprite, 1/60.0) # update at 60Hz

This is a robust technique for simple sprite movement, as the velocity will
remain constant regardless of the speed or load of the computer.

Some examples of other common animation variables are given in the table
below.

	Animation parameter

	Distance

	Velocity

	Rotation

	Degrees

	Degrees per second

	Position

	Pixels

	Pixels per second

	Keyframes

	Frame number

	Frames per second

Displaying the frame rate

A simple way to profile your application performance is to display the frame
rate while it is running. Printing it to the console is not ideal as this
will have a severe impact on performance. pyglet provides the
FPSDisplay class for displaying the frame rate
with very little effort:

fps_display = pyglet.window.FPSDisplay(window=window)

@window.event
def on_draw():
 window.clear()
 fps_display.draw()

By default the frame rate will be drawn in the bottom-left corner of the
window in a semi-translucent large font.
See the FPSDisplay documentation for details
on how to customise this, or even display another clock value (such as
the current time) altogether.

User-defined clocks

The default clock used by pyglet uses the system clock to determine the time
(i.e., time.time()). Separate clocks can be created, however, allowing
you to use another time source. This can be useful for implementing a
separate “game time” to the real-world time, or for synchronising to a network
time source or a sound device.

Each of the clock_* functions are aliases for the methods on a global
instance of Clock. You can construct or subclass
your own Clock, which can then maintain its own
schedule and framerate calculation.
See the class documentation for more details.

Creating an OpenGL context

This section describes how to configure an OpenGL context. For most
applications the information described here is far too low-level to be of any
concern, however more advanced applications can take advantage of the complete
control pyglet provides.

Displays, screens, configs and contexts

[image: ../_images/context_flow.png]

Flow of construction, from the abstract Canvas to a newly
created Window with its Context.

Contexts and configs

When you draw on a window in pyglet, you are drawing to an OpenGL context.
Every window has its own context, which is created when the window is created.
You can access the window’s context via its
context attribute.

The context is created from an OpenGL configuration (or “config”), which
describes various properties of the context such as what color format to use,
how many buffers are available, and so on. You can access the config
that was used to create a context via the context’s
config attribute.

For example, here we create a window using the default config and examine some
of its properties:

>>> import pyglet
>>> window = pyglet.window.Window()
>>> context = window.context
>>> config = context.config
>>> config.double_buffer
c_int(1)
>>> config.stereo
c_int(0)
>>> config.sample_buffers
c_int(0)

Note that the values of the config’s attributes are all ctypes instances.
This is because the config was not specified by pyglet. Rather, it has been
selected by pyglet from a list of configs supported by the system. You can
make no guarantee that a given config is valid on a system unless it was
provided to you by the system.

pyglet simplifies the process of selecting one of the system’s configs by
allowing you to create a “template” config which specifies only the values you
are interested in. See Simple context configuration for details.

Displays

The system may actually support several different sets of configs, depending on
which display device is being used. For example, a computer with two video
cards may not support the same configs on each card. Another example is using
X11 remotely: the display device will support different configurations than the
local driver. Even a single video card on the local computer may support
different configs for two monitors plugged in.

In pyglet, a Display is a collection of “screens”
attached to a single display device. On Linux, the display device corresponds
to the X11 display being used. On Windows and Mac OS X, there is only one
display (as these operating systems present multiple video cards as a single
virtual device).

The pyglet.canvas module provides access to the display(s). Use the
get_display() function to get the default display:

>>> display = pyglet.canvas.get_display()

Note

On X11, you can use the Display class directly to
specify the display string to use, for example to use a remotely connected
display. The name string is in the same format as used by the DISPLAY
environment variable:

>>> display = pyglet.canvas.Display(name=':1')

If you have multiple physical screens and you’re using Xinerama, see
Screens to select the desired screen as you would for Windows
and Mac OS X. Otherwise, you can specify the screen number via the
x_screen argument:

>>> display = pyglet.canvas.Display(name=':1', x_screen=1)

Screens

Once you have obtained a display, you can enumerate the screens that are
connected. A screen is the physical display medium connected to the display
device; for example a computer monitor, TV or projector. Most computers will
have a single screen, however dual-head workstations and laptops connected to
a projector are common cases where more than one screen will be present.

In the following example the screens of a dual-head workstation are listed:

>>> for screen in display.get_screens():
... print(screen)
...
XlibScreen(screen=0, x=1280, y=0, width=1280, height=1024, xinerama=1)
XlibScreen(screen=0, x=0, y=0, width=1280, height=1024, xinerama=1)

Because this workstation is running Linux, the returned screens are
XlibScreen, a subclass of Screen. The
screen and xinerama attributes are specific to Linux, but the
x, y,
width and
height attributes are present on all screens,
and describe the screen’s geometry, as shown below.

[image: ../_images/screens.png]

Example arrangement of screens and their reported geometry. Note that the
primary display (marked “1”) is positioned on the right, according to this
particular user’s preference.

There is always a “default” screen, which is the first screen returned by
get_screens(). Depending on the operating system,
the default screen is usually the one that contains the taskbar (on Windows) or
menu bar (on OS X).
You can access this screen directly using
get_default_screen().

OpenGL configuration options

When configuring or selecting a Config, you do so based
on the properties of that config. pyglet supports a fixed subset of the
options provided by AGL, GLX, WGL and their extensions. In particular, these
constraints are placed on all OpenGL configs:

	Buffers are always component (RGB or RGBA) color, never palette indexed.

	The “level” of a buffer is always 0 (this parameter is largely unsupported
by modern OpenGL drivers anyway).

	There is no way to set the transparent color of a buffer (again, this
GLX-specific option is not well supported).

	There is no support for pbuffers (equivalent functionality can be achieved
much more simply and efficiently using framebuffer objects).

The visible portion of the buffer, sometimes called the color buffer, is
configured with the following attributes:

	buffer_size
	Number of bits per sample. Common values are 24 and 32, which each
dedicate 8 bits per color component. A buffer size of 16 is also
possible, which usually corresponds to 5, 6, and 5 bits of red, green
and blue, respectively.

Usually there is no need to set this property, as the device driver
will select a buffer size compatible with the current display mode
by default.

	red_size, blue_size, green_size, alpha_size
	These each give the number of bits dedicated to their respective color
component. You should avoid setting any of the red, green or blue
sizes, as these are determined by the driver based on the
buffer_size property.

If you require an alpha channel in your color buffer (for example, if
you are compositing in multiple passes) you should specify
alpha_size=8 to ensure that this channel is created.

	sample_buffers and samples
	Configures the buffer for multisampling (MSAA), in which more than
one color sample is used to determine the color of each pixel,
leading to a higher quality, antialiased image.

Enable multisampling (MSAA) by setting sample_buffers=1, then
give the number of samples per pixel to use in samples.
For example, samples=2 is the fastest, lowest-quality multisample
configuration. samples=4 is still widely supported
and fairly performant even on Intel HD and AMD Vega.
Most modern GPUs support 2×, 4×, 8×, and 16× MSAA samples
with fairly high performance.

	stereo
	Creates separate left and right buffers, for use with stereo hardware.
Only specialised video hardware such as stereoscopic glasses will
support this option. When used, you will need to manually render to
each buffer, for example using glDrawBuffers.

	double_buffer
	Create separate front and back buffers. Without double-buffering,
drawing commands are immediately visible on the screen, and the user
will notice a visible flicker as the image is redrawn in front of
them.

It is recommended to set double_buffer=True, which creates a
separate hidden buffer to which drawing is performed. When the
Window.flip is called, the buffers are swapped,
making the new drawing visible virtually instantaneously.

In addition to the color buffer, several other buffers can optionally be
created based on the values of these properties:

	depth_size
	A depth buffer is usually required for 3D rendering. The typical
depth size is 24 bits. Specify 0 if you do not require a depth
buffer.

	stencil_size
	The stencil buffer is required for masking the other buffers and
implementing certain volumetric shadowing algorithms. The typical
stencil size is 8 bits; or specify 0 if you do not require it.

	accum_red_size, accum_blue_size, accum_green_size, accum_alpha_size
	The accumulation buffer can be used for simple antialiasing,
depth-of-field, motion blur and other compositing operations. Its use
nowadays is being superceded by the use of floating-point textures,
however it is still a practical solution for implementing these
effects on older hardware.

If you require an accumulation buffer, specify 8 for each
of these attributes (the alpha component is optional, of course).

	aux_buffers
	Each auxiliary buffer is configured the same as the colour buffer.
Up to four auxiliary buffers can typically be created. Specify 0
if you do not require any auxiliary buffers.

Like the accumulation buffer, auxiliary buffers are used less often
nowadays as more efficient techniques such as render-to-texture are
available. They are almost universally available on older hardware,
though, where the newer techniques are not possible.

If you wish to work with OpenGL directly, you can request a higher level
context. This is required if you wish to work with the modern OpenGL
programmable pipeline. Please note, however, that pyglet currently uses
legacy OpenGL functionality for many of its internal modules (such as
the text, graphics, and sprite modules). Requesting a higher version
context will currently prevent usage of these modules.

	major_version
	This will be either 3 or 4, for an OpenGL 3.x or 4.x context.

	minor_version
	The requested minor version of the context. In some cases, the OpenGL
driver may return a higher version than requested.

	forward_compatible
	Setting this to True will ask the driver to exclude legacy OpenGL
features from the context. Khronos does not recommend this option.

Note

To request a higher higher version OpenGL context on Mac OSX, it is necessary
to disable the pyglet shadow context. To do this, set the pyglet option
pyglet.options['shadow_window'] to False before creating a Window,
or importing pyglet.window.

The default configuration

If you create a Window without specifying the context
or config, pyglet will use a template config with the following properties:

	Attribute

	Value

	double_buffer

	True

	depth_size

	24

Simple context configuration

A context can only be created from a config that was provided by the system.
Enumerating and comparing the attributes of all the possible configs is
a complicated process, so pyglet provides a simpler interface based on
“template” configs.

To get the config with the attributes you need, construct a
Config and set only the attributes you are interested in.
You can then supply this config to the Window
constructor to create the context.

For example, to create a window with an alpha channel:

config = pyglet.gl.Config(alpha_size=8)
window = pyglet.window.Window(config=config)

It is sometimes necessary to create the context yourself, rather than letting
the Window constructor do this for you. In this case
use get_best_config() to obtain a “complete”
config, which you can then use to create the context:

display = pyglet.canvas.get_display()
screen = display.get_default_screen()

template = pyglet.gl.Config(alpha_size=8)
config = screen.get_best_config(template)
context = config.create_context(None)
window = pyglet.window.Window(context=context)

Note that you cannot create a context directly from a template (any
Config you constructed yourself). The
Window constructor performs a similar process to the
above to create the context if a template config is given.

Not all configs will be possible on all machines. The call to
get_best_config() will raise
NoSuchConfigException if the hardware does not
support the requested attributes. It will never return a config that does not
meet or exceed the attributes you specify in the template.

You can use this to support newer hardware features where available, but also
accept a lesser config if necessary. For example, the following code creates
a window with multisampling if possible, otherwise leaves multisampling off:

template = pyglet.gl.Config(sample_buffers=1, samples=4)
try:
 config = screen.get_best_config(template)
except pyglet.window.NoSuchConfigException:
 template = gl.Config()
 config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

Selecting the best configuration

Allowing pyglet to select the best configuration based on a template is
sufficient for most applications, however some complex programs may want to
specify their own algorithm for selecting a set of OpenGL attributes.

You can enumerate a screen’s configs using the
get_matching_configs() method. You must supply a
template as a minimum specification, but you can supply an “empty” template
(one with no attributes set) to get a list of all configurations supported by
the screen.

In the following example, all configurations with either an auxiliary buffer
or an accumulation buffer are printed:

display = pyglet.canvas.get_display()
screen = display.get_default_screen()

for config in screen.get_matching_configs(gl.Config()):
 if config.aux_buffers or config.accum_red_size:
 print(config)

As well as supporting more complex configuration selection algorithms,
enumeration allows you to efficiently find the maximum value of an attribute
(for example, the maximum samples per pixel), or present a list of possible
configurations to the user.

Sharing objects between contexts

Every window in pyglet has its own OpenGL context. Each context has its own
OpenGL state, including the matrix stacks and current flags. However,
contexts can optionally share their objects with one or more other contexts.
Shareable objects include:

	Textures

	Display lists

	Shader programs

	Vertex and pixel buffer objects

	Framebuffer objects

There are two reasons for sharing objects. The first is to allow objects to
be stored on the video card only once, even if used by more than one window.
For example, you could have one window showing the actual game, with other
“debug” windows showing the various objects as they are manipulated. Or, a
set of widget textures required for a GUI could be shared between all the
windows in an application.

The second reason is to avoid having to recreate the objects when a context
needs to be recreated. For example, if the user wishes to turn on
multisampling, it is necessary to recreate the context. Rather than destroy
the old one and lose all the objects already created, you can

	Create the new context, sharing object space with the old context, then

	Destroy the old context. The new context retains all the old objects.

pyglet defines an ObjectSpace: a representation of a
collection of objects used by one or more contexts. Each context has a single
object space, accessible via its
object_space attribute.

By default, all contexts share the same object space as long as at least one
context using it is “alive”. If all the contexts sharing an object space are
lost or destroyed, the object space will be destroyed also. This is why it is
necessary to follow the steps outlined above for retaining objects when a
context is recreated.

pyglet creates a hidden “shadow” context as soon as pyglet.gl is
imported. By default, all windows will share object space with this shadow
context, so the above steps are generally not needed. The shadow context also
allows objects such as textures to be loaded before a window is created (see
shadow_window in pyglet.options for further details).

When you create a Context, you tell pyglet which other
context it will obtain an object space from. By default (when using the
Window constructor
to create the context) the most recently created context will be used. You
can specify another context, or specify no context (to create a new object
space) in the Context constructor.

It can be useful to keep track of which object space an object was created in.
For example, when you load a font, pyglet caches the textures used and reuses
them; but only if the font is being loaded on the same object space. The
easiest way to do this is to set your own attributes on the
ObjectSpace object.

In the following example, an attribute is set on the object space indicating
that game objects have been loaded. This way, if the context is recreated,
you can check for this attribute to determine if you need to load them again:

context = pyglet.gl.current_context
object_space = context.object_space
object_space.my_game_objects_loaded = True

Avoid using attribute names on ObjectSpace that begin with
"pyglet", as they may conflict with an internal module.

The OpenGL interface

pyglet provides a direct interface to OpenGL. The interface is used by all
of pyglet’s higher-level API’s, so that all rendering is done efficiently by
the graphics card, rather than the CPU. You can access this interface directly;
using it is much like using OpenGL from C.

The interface is a “thin-wrapper” around libGL.so on Linux,
opengl32.dll on Windows and OpenGL.framework on OS X. The pyglet
maintainers regenerate the interface from the latest specifications, so it is
always up-to-date with the latest version and almost all extensions.

The interface is provided by the pyglet.gl package. To use it you will
need a good knowledge of OpenGL, C and ctypes. You may prefer to use OpenGL
without using ctypes, in which case you should investigate PyOpenGL [http://pyopengl.sourceforge.net/].
PyOpenGL [http://pyopengl.sourceforge.net/] provides similar functionality with a more “Pythonic” interface,
and will work with pyglet without any modification.

Using OpenGL

Documentation for OpenGL is provided at the OpenGL website [http://www.opengl.org] and
(more comprehensively) in the OpenGL Programming SDK [http://www.opengl.org/sdk].

Importing the package gives access to OpenGL and all OpenGL registered
extensions. This is sufficient for all but the most advanced uses of
OpenGL:

from pyglet.gl import *

All function names and constants are identical to the C counterparts. For
example, the following code sets the GL clear color and enables depth
testing and face culling:

from pyglet.gl import *

Direct OpenGL commands to this window.
window = pyglet.window.Window()

glClearColor(1, 1, 1, 1)
glEnable(GL_DEPTH_TEST)
glEnable(GL_CULL_FACE)

Some OpenGL functions require an array of data. These arrays must be
constructed as ctypes arrays of the correct type. The following example
shows how to construct arrays using OpenGL types:

from pyglet.gl import *

Create a new array type of length 32:
array32f = GLfloat * 32

Create an instance of this array with initial data:
array_instance = array32f(*data)

More commonly, combine these steps:
array_instance = (GLfloat * 32)(*data)

Similar array constructions can be used to create data for other OpenGL objects.

Resizing the window

pyglet sets up the viewport and an orthographic projection on each window
automatically. It does this in a default on_resize()
handler defined on Window. pyglet Windows have a
projection property that can be set with a 4x4 projection matrix.
See Matrix and Vector Math for more information on creating matrixes. The default
on_resize handler is defined as:

@window.event
def on_resize(width, height):
 glViewport(0, 0, *window.get_framebuffer_size())
 window.projection = Mat4.orthogonal_projection(0, width, 0, height, -255, 255)

If you need to define your own projection (for example, to use
a 3-dimensional perspective projection), you should override this
event with your own; for example:

@window.event
def on_resize(width, height):
 glViewport(0, 0, *window.get_framebuffer_size())
 window.projection = Mat4.perspective_projection(window.aspect_ratio, z_near=0.1, z_far=255)
 return pyglet.event.EVENT_HANDLED

Note that the on_resize() handler is called for
a window the first time it is displayed, as well as any time it is later
resized.

Error checking

By default, pyglet calls glGetError after every GL function call (except
where such a check would be invalid). If an error is reported, pyglet raises
GLException with the result of gluErrorString as the message.

This is very handy during development, as it catches common coding errors
early on. However, it has a significant impact on performance, and is
disabled when python is run with the -O option.

You can also disable this error check by setting the following option before
importing pyglet.gl or pyglet.window:

Disable error checking for increased performance
pyglet.options['debug_gl'] = False

from pyglet.gl import *

Setting the option after importing pyglet.gl will have no effect. Once
disabled, there is no error-checking overhead in each GL call.

Using extension functions

Before using an extension function, you should check that the extension is
implemented by the current driver. Typically this is done using
glGetString(GL_EXTENSIONS), but pyglet has a convenience module,
pyglet.gl.gl_info that does this for you:

if pyglet.gl.gl_info.have_extension('GL_ARB_shadow'):
 # ... do shadow-related code.
else:
 # ... raise an exception, or use a fallback method

You can also easily check the version of OpenGL:

if pyglet.gl.gl_info.have_version(4, 6):
 # We can assume all OpenGL 4.6 functions are implemented.

Remember to only call the gl_info functions after creating a window.

Using multiple windows

pyglet allows you to create and display any number of windows simultaneously.
Each will be created with its own OpenGL context, however all contexts will
share the same texture objects, display lists, shader programs, and so on,
by default [1]. Each context has its own state and framebuffers.

There is always an active context (unless there are no windows). When using
pyglet.app.run() for the application event loop, pyglet ensures that
the correct window is the active context before dispatching the
on_draw() or
on_resize() events.

In other cases, you can explicitly set the active context with
pyglet.window.Window.switch_to.

[1]
Sometimes objects and lists cannot be shared between contexts; for
example, when the contexts are provided by different video
devices. This will usually only occur if you explicitly select
different screens driven by different devices.

AGL, GLX and WGL

The OpenGL context itself is managed by an operating-system specific library:
AGL on OS X, GLX under X11 and WGL on Windows. pyglet handles these details
when a window is created, but you may need to use the functions directly (for
example, to use pbuffers) or an extension function.

The modules are named pyglet.gl.agl, pyglet.gl.glx and
pyglet.gl.wgl. You must only import the correct module for the running
operating system:

if sys.platform.startswith('linux'):
 from pyglet.gl.glx import *
 glxCreatePbuffer(...)
elif sys.platform == 'darwin':
 from pyglet.gl.agl import *
 aglCreatePbuffer(...)

Alternativally you can use pyglet.compat_platform to support
platforms that are compatible with platforms not officially supported
by pyglet. For example FreeBSD systems will appear as linux-compat
in pyglet.compat_platform.

There are convenience modules for querying the version and extensions of WGL
and GLX named pyglet.gl.wgl_info and pyglet.gl.glx_info, respectively.
AGL does not have such a module, just query the version of OS X instead.

If using GLX extensions, you can import pyglet.gl.glxext_arb for the
registered extensions or pyglet.gl.glxext_nv for the latest nVidia
extensions.

Similarly, if using WGL extensions, import pyglet.gl.wglext_arb or
pyglet.gl.wglext_nv.

Matrix and Vector Math

Modern OpenGL depends on matrixes for projection, translation, and
other things. To provide out-of-the-box functionality, pyglet’s math module
includes the necessary Matrix and Vector types to cover most use cases:

	pyglet.math.Vec2

	pyglet.math.Vec3

	pyglet.math.Vec4

	pyglet.math.Mat3

	pyglet.math.Mat4

These types support most common Matrix and Vector operations, including
rotating, scaling, and transforming. See the math module
for full API documentation.

Note

For performance, Matrix types are subclasses of the tuple type.
They are therefore immutable - all operations return a new object;
they are not updated in-place.

Creating a Matrix

A Matrix can be created with no arguments, or by passing a tuple or list
of float:

my_matrix = Mat4()
or
my_matrix = Mat4([1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0])

If no arguments are given, an “identity” matrix will be created by default.
(1.0 on the main diagonal).

Matrix Multiplication

Matrix classes in pyglet use the modern Python matmul (@) operator for
matrix multiplication. The star operator (*) is not allowed. For example:

new_matrix = rotation_matrix @ translation_matrix

Helper Methods

A common operation in OpenGL is creating a 2D or 3D projection matrix. The Mat4
module includes a helper method for this task. The arguments should be similar to what
you will find in popular OpenGL math libraries:

Orthographic (2D) projection matrix:
projection = Mat4.orthogonal_projection(0, width, 0, height, z_near=-255, z_far=255)

Perspective (3D) projection matrix:
projection = Mat4.perspective_projection(aspect_ratio, z_near=0.1, z_far=255)

For setting a 3D projection on the current OpenGL context, pyglet Windows have
a projection property. For example:

my_matrix = Mat4.perspective_projection(aspect_ratio, z_near=0.1, z_far=255)
window.projection = my_matrix

By default, pyglet automatically sets a 2D projection whenever a Window is resized.
If you plan to set your own 3D or 2D projection matrix, a useful pattern is to override
the default on_resize event handler:

@window.event
def on_resize(width, height):
 # window.viewport = (0, 0, *window.get_framebuffer_size())
 window.projection = Mat4.perspective_projection(window.aspect_ratio, z_near=0.1, z_far=255)
 return pyglet.event.EVENT_HANDLED # Don't call the default handler

The application event loop

In order to let pyglet process operating system events such as mouse and
keyboard events, applications need to enter an application event loop. The
event loop watches for new events, dispatches those events, and sleeps until
something else needs to be done. It also handles any functions that you
have scheduled on the clock (see Calling functions periodically).
pyglet ensures that the loop iterates only as often as necessary to fulfill all
scheduled functions and user input. It is well tuned for performance and low
power usage on Windows, Linux and macOS.

After creating Windows and attaching event handlers, most applications need
only call:

pyglet.app.run()

The run() function does not return until all open windows
have been closed, or until pyglet.app.exit() is called.

Once you have entered the event loop it dispatches window events (such as for
keyboard input or mouse movement), events from Controllers or Joysticks,
and any other events as they occur. By default, the application event loop will
also refresh all Windows and dispatch the on_draw()
event at a rate of 60Hz (60 times per second). You can customize this by
passing the desired interval in seconds to run():

pyglet.app.run(1/30) # 30Hz
or
pyglet.app.run(1/120) # 120Hz
or for benchmarking, redraw as fast as possible:
pyglet.app.run(0)

Passing None to run() is a special case. It will enter
the event loop as usual, but it will not dispatch the Window events. This can
be desired if you wish to have different refresh rates for different Windows,
or even change the refresh rate while the application is running.

Customising the event loop

The pyglet event loop is encapsulated in the
EventLoop class, which provides
several hooks that can be overridden for customising its behaviour. This is
recommended only for advanced users – typical applications and games are
unlikely to require this functionality.

To use the EventLoop class directly, instantiate it and call run:

event_loop = pyglet.app.EventLoop()
event_loop.run()

Only one EventLoop can be running at a time; when the
run() method is called
the module variable pyglet.app.event_loop is set to the running
instance. Other pyglet modules such as pyglet.window depend on this.

Event loop events

You can listen for several events on the event loop instance. A useful one
of these is on_window_close(), which is
dispatched whenever a window is closed. The default handler for this event
exits the event loop if there are no more windows. The following example
overrides this behaviour to exit the application whenever any window is
closed:

event_loop = pyglet.app.EventLoop()

@event_loop.event
def on_window_close(window):
 event_loop.exit()
 return pyglet.event.EVENT_HANDLED

event_loop.run()

Overriding the default idle policy

The pyglet.app.EventLoop.idle() method is called every iteration of
the event loop. It is responsible for calling scheduled clock functions,
and deciding how idle the application is. You can override
this method if you have specific requirements for tuning the performance
of your application; especially if it uses many windows.

The default implementation has the following algorithm:

	Call pyglet.clock.tick() with poll=True to call any scheduled
functions.

	Return the value of pyglet.clock.get_sleep_time().

The return value of the get_sleep_time() method is
the number of seconds until the event loop needs to iterate again (unless
there is an earlier user-input event); or None if the loop can wait
for input indefinitely.

Creating a Custom Event Loop

Many windowing toolkits requie the application developer to write their own
event loop. This is also possible in pyglet, but is usually just an inconvenience
compared to pyglet.app.run(). It can be necessary in some situations,
such as when combining pyglet with other toolkits, but is strongly discouraged
for the following reasons:

	Keeping track of delta times between frames, and maintaining a stable frame
rate can be challenging. It is difficult to write a manual event loop that does
not waste CPU cycles and is still responsive to user input.

	The EventLoop class provides plenty of hooks for most
toolkits to be integrated without needing to resort to a manual event loop.

	Because EventLoop is tuned for specific operating
systems, it is more responsive to user events, and continues calling clock
functions while windows are being resized, and (on macOS) the menu bar is
being tracked.

With that out of the way, a manual event loop usually has the following form:

while True:
 pyglet.clock.tick()
 pyglet.app.platform_event_loop.step(timeout)

 for window in pyglet.app.windows:
 window.switch_to()
 window.dispatch_events()
 window.dispatch_event('on_draw')
 window.flip()

The call to pyglet.clock.tick() is required for ensuring scheduled
functions are called, including the internal data pump functions for playing
sounds, animations, and video.

The dispatch_events() method checks the window’s
operating system event queue for user input and dispatches any events found.
The method does not wait for input – if there are no events pending, control is
returned to the program immediately.

The dispatch_event('on_draw')() method is optional
if you are catching this Window event. If you are not using this event, your
draw calls (Batch.draw()) should go here instead.

In-depth game example

This tutorial will walk you through the steps of writing a simple Asteroids
clone. It is assumed that the reader is familiar with writing and running
Python programs. This is not a programming tutorial, but it should hopefully
be clear enough to follow even if you’re a beginner. If you get stuck,
first have a look at the relevant sections of the programming guide.
The full source code can also be found in the examples/game/ folder
of the pyglet source directory, which you can follow along with.
If anything is still not clear, let us know!

Basic graphics

Lets begin! The first version of our game will simply show a score of zero,
a label showing the name of the program, three randomly placed asteroids,
and the player’s ship. Nothing will move.

Setting up

First things first, make sure you have pyglet installed. Then, we will set
up the folder structure for our project. Since this example game is written
in stages, we will have several version folders at various stages of
development. We will also have a shared resource folder with the images,
called ‘resources,’ outside of the example folders. Each version folder
contains a Python file called asteroid.py which runs the game, as well as
a sub-folder named game where we will place additional modules; this is
where most of the logic will be. Your folder structure should look like this:

game/
 resources/
 (images go here)
 version1/
 asteroid.py
 game/
 __init__.py

Getting a window

To set up a window, simply import pyglet, create a new instance of
pyglet.window.Window, and call pyglet.app.run():

import pyglet
game_window = pyglet.window.Window(800, 600)

if __name__ == '__main__':
 pyglet.app.run()

If you run the code above, you should see a window full of junk that
goes away when you press Esc. (What you are seeing is raw uninitialized
graphics memory).

Loading and displaying an image

Since our images will reside in a directory other than the example’s root
directory, we need to tell pyglet where to find them:

import pyglet
pyglet.resource.path = ['../resources']
pyglet.resource.reindex()

pyglet’s pyglet.resource module takes all of the hard work out of
finding and loading game resources such as images, sounds, etc.. All that
you need to do is tell it where to look, and reindex it. In this example
game, the resource path starts with ../ because the resources folder is
on the same level as the version1 folder. If we left it off, pyglet
would look inside version1/ for the resources/ folder.

Now that pyglet’s resource module is initialized, we can easily load the images
with the image() function of the resource module:

player_image = pyglet.resource.image("player.png")
bullet_image = pyglet.resource.image("bullet.png")
asteroid_image = pyglet.resource.image("asteroid.png")

Centering the images

Pyglet will draw and position all images from their lower left corner by
default. We don’t want this behavior for our images, which need to rotate
around their centers. All we have to do to achieve this is to set their
anchor points. Lets create a function to simplify this:

def center_image(image):
 """Sets an image's anchor point to its center"""
 image.anchor_x = image.width // 2
 image.anchor_y = image.height // 2

Now we can just call center_image() on all of our loaded images:

center_image(player_image)
center_image(bullet_image)
center_image(asteroid_image)

Remember that the center_image() function must be defined before it can be
called at the module level. Also, note that zero degrees points directly
to the right in pyglet, so the images are all drawn with their front
pointing to the right.

To access the images from asteroid.py, we need to use something like
from game import resources, which we’ll get into in the next section.

Initializing objects

We want to put some labels at the top of the window to give the player some
information about the score and the current difficulty level. Eventually,
we will have a score display, the name of the level, and a row of icons
representing the number of remaining lives.

Making the labels

To make a text label in pyglet, just initialize a pyglet.text.Label object:

score_label = pyglet.text.Label(text="Score: 0", x=10, y=460)
level_label = pyglet.text.Label(text="My Amazing Game",
 x=game_window.width//2, y=game_window.height//2, anchor_x='center')

Notice that the second label is centered using the anchor_x attribute.

Drawing the labels

We want pyglet to run some specific code whenever the window is drawn.
An on_draw() event is dispatched to the window
to give it a chance to redraw its contents. pyglet provides several ways
to attach event handlers to objects; a simple way is to use a decorator:

@game_window.event
def on_draw():
 # draw things here

The @game_window.event decorator lets the Window instance know that our
on_draw() function is an event handler.
The on_draw() event is fired whenever
- you guessed it - the window needs to be redrawn. Other events include
on_mouse_press() and
on_key_press().

Now we can fill the method with the functions necessary to draw our labels.
Before we draw anything, we should clear the screen. After that, we can
simply call each object’s draw() function:

@game_window.event
def on_draw():
 game_window.clear()

 level_label.draw()
 score_label.draw()

Now when you run asteroid.py, you should get a window with a score of zero
in the upper left corner and a centered label reading “My Amazing Game”
at the top of the screen.

Making the player and asteroid sprites

The player should be an instance or subclass of pyglet.sprite.Sprite,
like so:

from game import resources
...
player_ship = pyglet.sprite.Sprite(img=resources.player_image, x=400, y=300)

To get the player to draw on the screen, add a line to on_draw():

@game_window.event
def on_draw():
 ...
 player_ship.draw()

Loading the asteroids is a little more complicated, since we’ll need to place
more than one at random locations that don’t immediately collide with the
player. Let’s put the loading code in a new game submodule called load.py:

import pyglet
import random
from . import resources

def asteroids(num_asteroids):
 asteroids = []
 for i in range(num_asteroids):
 asteroid_x = random.randint(0, 800)
 asteroid_y = random.randint(0, 600)
 new_asteroid = pyglet.sprite.Sprite(img=resources.asteroid_image,
 x=asteroid_x, y=asteroid_y)
 new_asteroid.rotation = random.randint(0, 360)
 asteroids.append(new_asteroid)
 return asteroids

All we are doing here is making a few new sprites with random positions.
There’s still a problem, though - an asteroid might randomly be placed
exactly where the player is, causing immediate death. To fix this issue,
we’ll need to be able to tell how far away new asteroids are from the player.
Here is a simple function to calculate that distance:

import math
...
def distance(point_1=(0, 0), point_2=(0, 0)):
 """Returns the distance between two points"""
 return math.sqrt((point_1[0] - point_2[0]) ** 2 + (point_1[1] - point_2[1]) ** 2)

To check new asteroids against the player’s position, we need to pass the
player’s position into the asteroids() function and keep regenerating
new coordinates until the asteroid is far enough away. pyglet sprites
keep track of their position both as a tuple (Sprite.position) and as
x, y, and z attributes (Sprite.x, Sprite.y, Sprite.z). To keep our code
short, we’ll just pass the position tuple into the function. We’re not using
the z value, so we just use a throwaway variable for that:

def asteroids(num_asteroids, player_position):
 asteroids = []
 for i in range(num_asteroids):
 asteroid_x, asteroid_y, _ = player_position
 while distance((asteroid_x, asteroid_y), player_position) < 100:
 asteroid_x = random.randint(0, 800)
 asteroid_y = random.randint(0, 600)
 new_asteroid = pyglet.sprite.Sprite(
 img=resources.asteroid_image, x=asteroid_x, y=asteroid_y)
 new_asteroid.rotation = random.randint(0, 360)
 asteroids.append(new_asteroid)
 return asteroids

For each asteroid, it chooses random positions until it finds one away from
the player, creates the sprite, and gives it a random rotation. Each asteroid
is appended to a list, which is returned.

Now you can load three asteroids like this:

from game import resources, load
...
asteroids = load.asteroids(3, player_ship.position)

The asteroids variable now contains a list of sprites. Drawing them on the
screen is as simple as it was for the player’s ship - just call their
draw() methods:

@game_window.event
def on_draw():
 ...
 for asteroid in asteroids:
 asteroid.draw()

This wraps up the first section. Your “game” doesn’t do much of anything yet,
but we’ll get to that in the following sections. You may want to look over
the examples/game/version1 folder in the pyglet source to review what we’ve
done, and to find a functional copy.

Basic motion

In the second version of the example, we’ll introduce a simpler, faster way
to draw all of the game objects, as well as add row of icons indicating the
number of lives left. We’ll also write some code to make the player and the
asteroids obey the laws of physics.

Drawing with batches

Calling each object’s draw() method manually can become cumbersome and
tedious if there are many different kinds of objects. It’s also very
inefficient if you need to draw a large number of objects. The pyglet
pyglet.graphics.Batch class simplifies drawing by letting you draw
all your objects with a single function call. All you need to do is create
a batch, pass it into each object you want to draw, and call the batch’s
draw() method.

To create a new batch, simply create an instance of pyglet.graphics.Batch:

main_batch = pyglet.graphics.Batch()

To make an object a member of a batch, just pass the batch into its
constructor as the batch keyword argument:

score_label = pyglet.text.Label(text="Score: 0", x=10, y=575, batch=main_batch)

Add the batch keyword argument to each graphical object created in asteroid.py.

To use the batch with the asteroid sprites, we’ll need to pass the batch into
the game.load.asteroid() function, then just add it as a keyword argument to
each new sprite. Update the function:

def asteroids(num_asteroids, player_position, batch=None):
 ...
 new_asteroid = pyglet.sprite.Sprite(img=resources.asteroid_image,
 x=asteroid_x, y=asteroid_y,
 batch=batch)

And update the place where it’s called:

asteroids = load.asteroids(3, player_ship.position, main_batch)

Now you can replace those five lines of draw() calls with just one:

main_batch.draw()

Now when you run asteroid.py, it should look exactly the same.

Displaying little ship icons

To show how many lives the player has left, we’ll need to draw a little row
of icons in the upper right corner of the screen. Since we’ll be making more
than one using the same template, let’s create a function called
player_lives() in the load module to generate them. The icons should look
the same as the player’s ship. We could create a scaled version using an
image editor, or we could just let pyglet do the scaling. I don’t know about
you, but I prefer the option that requires less work.

The function for creating the icons is almost exactly the same as the one for
creating asteroids. For each icon we just create a sprite, give it a position
and scale, and append it to the return list:

def player_lives(num_icons, batch=None):
 player_lives = []
 for i in range(num_icons):
 new_sprite = pyglet.sprite.Sprite(img=resources.player_image,
 x=785-i*30, y=585, batch=batch)
 new_sprite.scale = 0.5
 player_lives.append(new_sprite)
 return player_lives

The player icon is 50x50 pixels, so half that size will be 25x25. We want to
put a little bit of space between each icon, so we create them at 30-pixel
intervals starting from the right side of the screen and moving to the left.
Note that like the asteroids() function, player_lives() takes a batch
argument.

Making things move

The game would be pretty boring if nothing on the screen ever moved. To
achieve motion, we’ll need to write our own set of classes to handle
frame-by-frame movement calculations. We’ll also need to write a Player
class to respond to keyboard input.

Creating the basic motion class

Since every visible object is represented by at least one Sprite, we may as
well make our basic motion class a subclass of pyglet.sprite.Sprite. Another
approach would be to have our class have a sprite attribute.

Create a new game submodule called physicalobject.py and declare a
PhysicalObject class. The only new attributes we’ll be adding will store the
object’s velocity, so the constructor will be simple:

class PhysicalObject(pyglet.sprite.Sprite):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.velocity_x, self.velocity_y = 0.0, 0.0

Each object will need to be updated every frame, so let’s write an update()
method:

def update(self, dt):
 self.x += self.velocity_x * dt
 self.y += self.velocity_y * dt

What’s dt? It’s the “delta time”, or “time step”. Game frames are not
instantaneous, and they don’t always take equal amounts of time to draw.
If you’ve ever tried to play a modern game on an old machine, you know
that frame rates can jump all over the place. There are a number of
ways to deal with this problem, the simplest one being to just multiply all
time-sensitive operations by dt. I’ll show you how this value is calculated
later.

If we give objects a velocity and just let them go, they will fly off the
screen before long. Since we’re making an Asteroids clone, we would rather
they just wrapped around the screen. Here is a simple function that
accomplishes the goal:

def check_bounds(self):
 min_x = -self.image.width / 2
 min_y = -self.image.height / 2
 max_x = 800 + self.image.width / 2
 max_y = 600 + self.image.height / 2
 if self.x < min_x:
 self.x = max_x
 elif self.x > max_x:
 self.x = min_x
 if self.y < min_y:
 self.y = max_y
 elif self.y > max_y:
 self.y = min_y

As you can see, it simply checks to see if objects are no longer visible on
the screen, and if so, it moves them to the other side of the screen.
To make every PhysicalObject use this behavior, add a call to
self.check_bounds() at the end of update().

To make the asteroids use our new motion code, just import the physicalobject
module and change the new_asteroid = … line to create a new
PhysicalObject instead of a Sprite. You’ll also want to give them a random
initial velocity. Here is the new, improved load.asteroids() function:

def asteroids(num_asteroids, player_position, batch=None):
 ...
 new_asteroid = physicalobject.PhysicalObject(...)
 new_asteroid.rotation = random.randint(0, 360)
 new_asteroid.velocity_x = random.random()*40
 new_asteroid.velocity_y = random.random()*40
 ...

Writing the game update function

To call each object’s update() method every frame, we first need to have a
list of those objects. For now, we can just declare it after setting up all
the other objects:

game_objects = [player_ship] + asteroids

Now we can write a simple function to iterate over the list:

def update(dt):
 for obj in game_objects:
 obj.update(dt)

The update() function takes a dt parameter because it is still not the
source of the actual time step.

Calling the update() function

We need to update the objects at least once per frame. What’s a frame? Well,
most screens have a maximum refresh rate of 60 hertz. If we set our loop to
run at exactly 60 hertz, though, the motion will look a little jerky because
it won’t match the screen exactly. Instead, we can have it
update twice as fast, 120 times per second, to get smooth animation.

The best way to call a function 120 times per second is to ask pyglet to do it.
The pyglet.clock module contains a number of ways to call functions
periodically or at some specified time in the future. The one we want is
pyglet.clock.schedule_interval():

pyglet.clock.schedule_interval(update, 1/120.0)

Putting this line above pyglet.app.run() in the if __name__ == ‘__main__’
block tells pyglet to call update() 120 times per second. Pyglet will pass
in the elapsed time, i.e. dt, as the only parameter.

Now when you run asteroid.py, you should see your formerly static asteroids
drifting serenely across the screen, reappearing on the other side when they
slide off the edge.

Writing the Player class

In addition to obeying the basic laws of physics, the player object needs to
respond to keyboard input. Start by creating a game.player module,
importing the appropriate modules, and subclassing PhysicalObject:

from . import physicalobject, resources

class Player(physicalobject.PhysicalObject):

 def __init__(self, *args, **kwargs):
 super().__init__(img=resources.player_image, *args, **kwargs)

So far, the only difference between a Player and a PhysicalObject is that a
Player will always have the same image. But Player objects need a couple
more attributes. Since the ship will always thrust with the same force in
whatever direction it points, we’ll need to define a constant for the
magnitude of that force. We should also define a constant for the ship’s
rotation speed:

self.thrust = 300.0
self.rotate_speed = 200.0

Now we need to get the class to respond to user input. Pyglet uses an
event-based approach to input, sending key press and key release events
to registered event handlers. But we want to use a polling approach in
this example, checking periodically if a key is down. One way to accomplish
that is to maintain a dictionary of keys. First, we need to initialize the
dictionary in the constructor:

self.keys = dict(left=False, right=False, up=False)

Then we need to write two methods, on_key_press() and on_key_release().
When pyglet checks a new event handler, it looks for these two methods,
among others:

import math
from pyglet.window import key
from . import physicalobject, resources

class Player(physicalobject.PhysicalObject)

 def on_key_press(self, symbol, modifiers):
 if symbol == key.UP:
 self.keys['up'] = True
 elif symbol == key.LEFT:
 self.keys['left'] = True
 elif symbol == key.RIGHT:
 self.keys['right'] = True

 def on_key_release(self, symbol, modifiers):
 if symbol == key.UP:
 self.keys['up'] = False
 elif symbol == key.LEFT:
 self.keys['left'] = False
 elif symbol == key.RIGHT:
 self.keys['right'] = False

That looks pretty cumbersome. There’s a better way to do it which we’ll see
later, but for now, this version serves as a good demonstration of pyglet’s
event system.

The last thing we need to do is write the update() method. It follows the
same behavior as a PhysicalObject plus a little extra, so we’ll need to call
PhysicalObject’s update() method and then respond to input:

def update(self, dt):
 super(Player, self).update(dt)

 if self.keys['left']:
 self.rotation -= self.rotate_speed * dt
 if self.keys['right']:
 self.rotation += self.rotate_speed * dt

Pretty simple so far. To rotate the player, we just add the rotation speed
to the angle, multiplied by dt to account for time. Note that Sprite objects’
rotation attributes are in degrees, with clockwise as the positive direction.
This means that you need to call math.degrees() or math.radians() and make
the result negative whenever you use Python’s built-in math functions with
the Sprite class, since those functions use radians instead of degrees, and
their positive direction is counter-clockwise. The code to make the ship
thrust forward uses an example of such a conversion:

if self.keys['up']:
 angle_radians = -math.radians(self.rotation)
 force_x = math.cos(angle_radians) * self.thrust * dt
 force_y = math.sin(angle_radians) * self.thrust * dt
 self.velocity_x += force_x
 self.velocity_y += force_y

First, we convert the angle to radians so that math.cos() and math.sin()
will get the correct values. Then we apply some simple physics to modify the
ship’s X and Y velocity components and push the ship in the right direction.

We now have a complete Player class. If we add it to the game and tell pyglet
that it’s an event handler, we should be good to go.

Integrating the player class

The first thing we need to do is make player_ship an instance of Player:

from game import player
...
player_ship = player.Player(x=400, y=300, batch=main_batch)

Now we need to tell pyglet that player_ship is an event handler. To do that,
we need to push it onto the event stack with game_window.push_handlers():

game_window.push_handlers(player_ship)

That’s it! Now you should be able to run the game and move the player with the
arrow keys.

Giving the player something to do

In any good game, there needs to be something working against the player.
In the case of Asteroids, it’s the threat of collision with, well, an asteroid.
Collision detection requires a lot of infrastructure in the code, so this
section will focus on making it work. We’ll also clean up the
player class and show some visual feedback for thrusting.

Simplifying player input

Right now, the Player class handles all of its own keyboard events.
It spends 13 lines of code doing nothing but setting boolean values in a
dictionary. One would think that there would be a better way, and there is:
pyglet.window.key.KeyStateHandler. This handy class automatically
does what we have been doing manually: it tracks the state of every key on the
keyboard.

To start using it, we need to initialize it and push it onto the event stack
instead of the Player class. First, let’s add it to Player‘s constructor:

self.key_handler = key.KeyStateHandler()

We also need to push the key_handler object onto the event stack. Keep pushing
the player_ship object in addition to its key handler, because we’ll need it
to keep handling key press and release events later:

game_window.push_handlers(player_ship.key_handler)

Since Player now relies on key_handler to read the keyboard, we need to change
the update() method to use it. The only changes are in the if conditions:

if self.key_handler[key.LEFT]:
 ...
if self.key_handler[key.RIGHT]:
 ...
if self.key_handler[key.UP]:
 ...

Now we can remove the on_key_press() and on_key_release() methods
from the class. It’s just that simple. If you need to see a list of key
constants, you can check the API documentation under
pyglet.window.key.

Adding an engine flame

Without visual feedback, it can be difficult to tell if the ship is actually
thrusting forward or not, especially for an observer just watching someone
else play the game. One way to provide visual feedback is to show an engine
flame behind the player while the player is thrusting.

Loading the flame image

The player will now be made of two sprites. There’s nothing preventing us
from letting a Sprite own another Sprite, so we’ll just give Player an
engine_sprite attribute and update it every frame. For our purposes,
this approach will be the simplest and most scalable.

To make the flame draw in the correct position, we could either do some
complicated math every frame, or we could just move the image’s anchor point.
First, load the image in resources.py:

engine_image = pyglet.resource.image("engine_flame.png")

To get the flame to draw behind the player, we need to move the flame image’s
center of rotation to the right, past the end of the image.
To do that, we just set its anchor_x and anchor_y attributes:

engine_image.anchor_x = engine_image.width * 1.5
engine_image.anchor_y = engine_image.height / 2

Now the image is ready to be used by the player class. If you’re still
confused about anchor points, experiment with the values for engine_image’s
anchor point when you finish this section.

Creating and drawing the flame

The engine sprite needs to be initialized with all the same arguments as
Player, except that it needs a different image and must be initially invisible.
The code for creating it belongs in Player.__init__() and is very
straightforward:

self.engine_sprite = pyglet.sprite.Sprite(img=resources.engine_image, *args, **kwargs)
self.engine_sprite.visible = False

To make the engine sprite appear only while the player is thrusting, we need
to add some logic to the if self.key_handler[key.UP] block in the update()
method:

if self.key_handler[key.UP]:
 ...
 self.engine_sprite.visible = True
else:
 self.engine_sprite.visible = False

To make the sprite appear at the player’s position, we also need to update
its position and rotation attributes:

if self.key_handler[key.UP]:
 ...
 self.engine_sprite.rotation = self.rotation
 self.engine_sprite.x = self.x
 self.engine_sprite.y = self.y
 self.engine_sprite.visible = True
else:
 self.engine_sprite.visible = False

Cleaning up after death

When the player is inevitably smashed to bits by an asteroid, he will
disappear from the screen. However, simply removing the Player instance
from the game_objects list is not enough for it to be removed from the
graphics batch. To do that, we need to call its delete() method.
Normally a Sprite‘s own delete() method will work fine without modifications,
but our subclass has its own child Sprite (the engine flame) which must
also be deleted when the Player instance is deleted. To get both to die
gracefully, we must write a simple but slightly enhanced delete() method:

def delete(self):
 self.engine_sprite.delete()
 super(Player, self).delete()

The Player class is now cleaned up and ready to go.

Checking For collisions

To make objects disappear from the screen, we’ll need to manipulate the game
objects list. Every object will need to check every other object’s position
against its own, and each object will have to decide whether or not it should
be removed from the list. The game loop will then check for dead objects
and remove them from the list.

Checking all object pairs

We need to check every object against every other object. The simplest
method is to use nested loops. This method will be inefficient for a large
number of objects, but it will work for our purposes. We can use one easy
optimization and avoid checking the same pair of objects twice.
Here’s the setup for the loops, which belongs in update().
It simply iterates over all object pairs without doing anything:

for i in range(len(game_objects)):
 for j in range(i+1, len(game_objects)):
 obj_1 = game_objects[i]
 obj_2 = game_objects[j]

We’ll need a way to check if an object has already been killed. We could go
over to PhysicalObject right now and put it in, but let’s keep working on
the game loop and implement the method later. For now, we’ll just assume that
everything in game_objects has a dead attribute which will be False
until the class sets it to True, at which point it will be ignored and
eventually removed from the list.

To perform the actual check, we’ll also need to call two more methods that
don’t exist yet. One method will determine if the two objects actually collide,
and the other method will give each object an opportunity to respond to
the collision. The checking code itself is easy to understand,
so I won’t bother you with further explanations:

if not obj_1.dead and not obj_2.dead:
 if obj_1.collides_with(obj_2):
 obj_1.handle_collision_with(obj_2)
 obj_2.handle_collision_with(obj_1)

Now all that remains is for us to go through the list and remove dead objects:

for to_remove in [obj for obj in game_objects if obj.dead]:
 to_remove.delete()
 game_objects.remove(to_remove)

As you can see, it simply calls the object’s delete() method to remove it
from any batches, then it removes it from the list. If you haven’t used list
comprehensions much, the above code might look like it’s removing objects
from the list while traversing it. Fortunately, the list comprehension is
evaluated before the loop actually runs, so there should be no problems.

Implementing the collision functions

We need to add three things to the PhysicalObject class: the dead attribute,
the collides_with() method, and the handle_collision_with() method.
The collides_with() method will need to use the distance() function,
so let’s start by moving that function into its own submodule of game,
called util.py:

import pyglet, math

def distance(point_1=(0, 0), point_2=(0, 0)):
 return math.sqrt(
 (point_1[0] - point_2[0]) ** 2 +
 (point_1[1] - point_2[1]) ** 2)

Remember to call from util import distance in load.py. Now we can write
PhysicalObject.collides_with() without duplicating code:

def collides_with(self, other_object):
 collision_distance = self.image.width/2 + other_object.image.width/2
 actual_distance = util.distance(self.position, other_object.position)

 return (actual_distance <= collision_distance)

The collision handler function is even simpler, since for now we just want
every object to die as soon as it touches another object:

def handle_collision_with(self, other_object):
 self.dead = True

One last thing: set self.dead = False in PhysicalObject.__init__().

And that’s it! You should be able to zip around the screen, engine blazing
away. If you hit something, both you and the thing you collided with should
disappear from the screen. There’s still no game, but we are clearly
making progress.

Collision response

In this section, we’ll add bullets. This new feature will require us to
start adding things to the game_objects list during the game,
as well as have objects check each others’ types to make a decision about
whether or not they should die.

Adding objects during play

How?

We handled object removal with a boolean flag. Adding objects will be
a little bit more complicated. For one thing, an object can’t just say
“Add me to the list!” It has to come from somewhere.
For another thing, an object might want to add more than one other
object at a time.

There are a few ways to solve this problem. To avoid circular references,
keep our constructors nice and short, and avoid adding extra modules,
we’ll have each object keep a list of new child objects to be added to
game_objects. This approach will make it easy for any object in the game
to spawn more objects.

Tweaking the game loop

The simplest way to check objects for children and add those children to
the list is to add two lines of code to the game_objects loop.
We haven’t implemented the new_objects attribute yet, but when we do,
it will be a list of objects to add:

for obj in game_objects:
 obj.update(dt)
 game_objects.extend(obj.new_objects)
 obj.new_objects = []

Unfortunately, this simple solution is problematic. It’s generally a
bad idea to modify a list while iterating over it. The fix is to simply
add new objects to a separate list, then add the objects in the separate
list to game_objects after we have finished iterating over it.

Declare a to_add list just above the loop and add new objects to it instead.
At the very bottom of update(), after the object removal code,
add the objects in to_add to game_objects:

...collision...

to_add = []

for obj in game_objects:
 obj.update(dt)
 to_add.extend(obj.new_objects)
 obj.new_objects = []

...removal...

game_objects.extend(to_add)

Putting the attribute in PhysicalObject

As mentioned before, all we have to do is declare a new_objects attribute
in the PhysicalObject class:

def __init__(self, *args, **kwargs):

 self.new_objects = []

To add a new object, all we have to do is put something in new_objects,
and the main loop will see it, add it to the game_objects list,
and clear new_objects.

Adding bullets

Writing the bullet class

For the most part, bullets act like any other PhysicalObject, but they have
two differences, at least in this game: they only collide with some objects,
and they disappear from the screen after a couple of seconds to prevent the
player from flooding the screen with bullets.

First, make a new submodule of game called bullet.py and start a simple
subclass of PhysicalObject:

import pyglet
from . import physicalobject, resources

class Bullet(physicalobject.PhysicalObject):
 """Bullets fired by the player"""

 def __init__(self, *args, **kwargs):
 super(Bullet, self).__init__(
 resources.bullet_image, *args, **kwargs)

To get bullets to disappear after a time, we could keep track of our own
age and lifespan attributes, or we could let pyglet do all the work for us.
I don’t know about you, but I prefer the second option.
First, we need to write a function to call at the end of a bullet’s life:

def die(self, dt):
 self.dead = True

Now we need to tell pyglet to call it after half a second or so.
We can do this as soon as the object is initialized by adding a call to
pyglet.clock.schedule_once() to the constructor:

def __init__(self, *args, **kwargs):
 super(Bullet, self).__init__(resources.bullet_image, *args, **kwargs)
 pyglet.clock.schedule_once(self.die, 0.5)

There’s still more work to be done on the Bullet class, but before we
do any more work on the class itself, let’s get them on the screen.

Firing bullets

The Player class will be the only class that fires bullets,
so let’s open it up, import the bullet module, and add a bullet_speed attribute
to its constructor:

...
from . import bullet

class Player(physicalobject.PhysicalObject):
 def __init__(self, *args, **kwargs):
 super(Player, self).__init__(img=resources.player_image, *args, **kwargs)
 ...
 self.bullet_speed = 700.0

Now we can write the code to create a new bullet and send it hurling off
into space. First, we need to resurrect the on_key_press() event handler:

def on_key_press(self, symbol, modifiers):
 if symbol == key.SPACE:
 self.fire()

The fire() method itself will be a bit more complicated. Most of the
calculations will be very similar to the ones for thrusting, but there
will be some differences. We’ll need to spawn the bullet out at the
nose of the ship, not at its center. We’ll also need to add the ship’s
existing velocity to the bullet’s new velocity, or the bullets will
end up going slower than the ship if the player gets going fast enough.

As usual, convert to radians and reverse the direction:

def fire(self):
 angle_radians = -math.radians(self.rotation)

Next, calculate the bullet’s position and instantiate it:

ship_radius = self.image.width/2
bullet_x = self.x + math.cos(angle_radians) * ship_radius
bullet_y = self.y + math.sin(angle_radians) * ship_radius
new_bullet = bullet.Bullet(bullet_x, bullet_y, batch=self.batch)

Set its velocity using almost the same equations:

bullet_vx = (
 self.velocity_x +
 math.cos(angle_radians) * self.bullet_speed
)
bullet_vy = (
 self.velocity_y +
 math.sin(angle_radians) * self.bullet_speed
)
new_bullet.velocity_x = bullet_vx
new_bullet.velocity_y = bullet_vy

Finally, add it to the new_objects list so that the main loop will pick it up
and add it to game_objects:

self.new_objects.append(new_bullet)

At this point, you should be able to fire bullets out of the front of your
ship. There’s just one problem: as soon as you fire, your ship disappears.
You may have noticed earlier that asteroids also disappear when they touch
each other. To fix this problem, we’ll need to start customizing
each class’s handle_collision_with() method.

Customizing collision behavior

There are five kinds of collisions in the current version of the game:
bullet-asteroid, bullet-player, asteroid-player, bullet-bullet,
and asteroid-asteroid. There would be many more in a more complex game.

In general, objects of the same type should not be destroyed when they collide,
so we can generalize that behavior in PhysicalObject. Other interactions will
require a little more work.

Letting twins ignore each other

To let two asteroids or two bullets pass each other by without a word of
acknowledgement (or a dramatic explosion), we just need to check if their
classes are equal in the PhysicalObject.handle_collision_with() method:

def handle_collision_with(self, other_object):
 if other_object.__class__ == self.__class__:
 self.dead = False
 else:
 self.dead = True

There are a few other, more elegant ways to check for object equality in
Python, but the above code gets the job done.

Customizing bullet collisions

Since bullet collision behavior can vary so wildly across objects, let’s add
a reacts_to_bullets attribute to PhysicalObjects which the Bullet class can
check to determine if it should register a collision or not.
We should also add an is_bullet attribute so we can check the collision
properly from both objects.

(These are not “good” design decisions, but they will work.)

First, initialize the reacts_to_bullets attribute to True in the
PhysicalObject constructor:

class PhysicalObject(pyglet.sprite.Sprite):
 def __init__(self, *args, **kwargs):
 ...
 self.reacts_to_bullets = True
 self.is_bullet = False
 ...

class Bullet(physicalobject.PhysicalObject):
 def __init__(self, *args, **kwargs):
 ...
 self.is_bullet = True

Then, insert a bit of code in PhysicalObject.collides_with() to ignore
bullets under the right circumstances:

def collides_with(self, other_object):
 if not self.reacts_to_bullets and other_object.is_bullet:
 return False
 if self.is_bullet and not other_object.reacts_to_bullets:
 return False
 ...

Finally, set self.reacts_to_bullets = False in Player.__init__(). The Bullet
class is completely finished! Now let’s make something happen when a bullet
hits an asteroid.

Making asteroids explode

Asteroids is challenging to players because every time you shoot an asteroid,
it turns into more asteroids. We need to mimic that behavior if we want our
game to be any fun. We’ve already done most of the hard parts.
All that remains is to make another subclass of PhysicalObject and write
a custom handle_collision_with() method, along with a couple of maintenance
tweaks.

Writing the asteroid class

Create a new submodule of game called asteroid.py. Write the usual constructor
to pass a specific image to the superclass, passing along any other parameters:

import pyglet
from . import resources, physicalobject

class Asteroid(physicalobject.PhysicalObject):
 def __init__(self, *args, **kwargs):
 super(Asteroid, self).__init__(resources.asteroid_image, *args, **kwargs)

Now we need to write a new handle_collision_with() method. It should create
a random number of new, smaller asteroids with random velocities. However,
it should only do that if it’s big enough. An asteroid should divide at most
twice, and if we scale it down by half each time, then an asteroid should stop
dividing when it’s 1/4 the size of a new asteroid.

We want to keep the old behavior of ignoring other asteroids, so start the
method with a call to the superclass’s method:

def handle_collision_with(self, other_object):
 super(Asteroid, self).handle_collision_with(other_object)

Now we can say that if it’s supposed to die, and it’s big enough, then we
should create two or three new asteroids with random rotations and velocities.
We should add the old asteroid’s velocity to the new ones to make it look
like they come from the same object:

import random

class Asteroid:
 def handle_collision_with(self, other_object):
 super(Asteroid, self).handle_collision_with(other_object)
 if self.dead and self.scale > 0.25:
 num_asteroids = random.randint(2, 3)
 for i in range(num_asteroids):
 new_asteroid = Asteroid(x=self.x, y=self.y, batch=self.batch)
 new_asteroid.rotation = random.randint(0, 360)
 new_asteroid.velocity_x = (random.random() * 70 + self.velocity_x)
 new_asteroid.velocity_y = (random.random() * 70 + self.velocity_y)
 new_asteroid.scale = self.scale * 0.5
 self.new_objects.append(new_asteroid)

While we’re here, let’s add a small graphical touch to the asteroids by making
them rotate a little. To do that, we’ll add a rotate_speed attribute and give
it a random value. Then we’ll write an update() method to apply that
rotation every frame.

Add the attribute in the constructor:

def __init__(self, *args, **kwargs):
 super(Asteroid, self).__init__(resources.asteroid_image, *args, **kwargs)
 self.rotate_speed = random.random() * 100.0 - 50.0

Then write the update() method:

def update(self, dt):
 super(Asteroid, self).update(dt)
 self.rotation += self.rotate_speed * dt

The last thing we need to do is go over to load.py and have the asteroid()
method create a new Asteroid instead of a PhysicalObject:

from . import asteroid

def asteroids(num_asteroids, player_position, batch=None):
 ...
 for i in range(num_asteroids):
 ...
 new_asteroid = asteroid.Asteroid(x=asteroid_x, y=asteroid_y, batch=batch)
 ...
 return asteroids

Now we’re looking at something resembling a game. It’s simple, but all of
the basics are there.

Next steps

So instead of walking you through a standard refactoring session,
I’m going to leave it as an exercise for you to do the following:

* Make the Score counter mean something
* Let the player restart the level if they die
* Implement lives and a “Game Over” screen
* Add particle effects

Good luck! With a little effort, you should be able to figure out most of
these things on your own. If you have trouble, join us on the pyglet
mailing list.

Also, in addition to this example game, there is yet another Asteroids clone
available in the /examples/astraea/ folder in the pyglet source directory.
In comparison to this example game excercise we’ve just completed,
Astraea is a complete game with a proper menu, score system, and additional
graphical effects. No step-by-step documentation is available for Astraea,
but the code itself should be easy to understand and illustrates some nice
techniques.

Runtime Options

	
options = {'audio': ('xaudio2', 'directsound', 'openal', 'pulse', 'silent'), 'com_mta': False, 'debug_font': False, 'debug_gl': True, 'debug_gl_shaders': False, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_graphics_batch': False, 'debug_input': False, 'debug_lib': False, 'debug_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'dw_legacy_naming': False, 'headless': False, 'headless_device': 0, 'osx_alt_loop': False, 'scale_with_dpi': False, 'search_local_libs': True, 'shadow_window': True, 'vsync': None, 'win32_disable_shaping': False, 'win32_disable_xinput': False, 'win32_gdi_font': False}

	Global dict of pyglet options.

To change an option from its default, you must import
pyglet before any sub-packages. For example:

import pyglet
pyglet.options['debug_gl'] = False

The default options can be overridden from the OS environment. The
corresponding environment variable for each option key is prefaced by
PYGLET_. For example, in Bash you can set the debug_gl option with:

PYGLET_DEBUG_GL=True; export PYGLET_DEBUG_GL

For options requiring a tuple of values, separate each value with a comma.

The non-development options are:

	audio
	A Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence] of valid audio modules names. They will
be tried from first to last until either a driver loads or no entries
remain. See Choosing the audio driver for more information.

Valid driver names are:

	'xaudio2', the Windows Xaudio2 audio module (Windows only)

	'directsound', the Windows DirectSound audio module (Windows only)

	
	'pulse', the PulseAudio module
	(Linux only, otherwise nearly ubiquitous. Limited features; use
'openal' for more.)

	'openal', the OpenAL audio module
(A library may need to be installed on Windows and Linux)

	'silent', no audio

	debug_lib
	If True, prints the path of each dynamic library loaded.

	debug_gl
	If True, all calls to OpenGL functions are checked afterwards for
errors using glGetError. This will severely impact performance,
but provides useful exceptions at the point of failure. By default,
this option is enabled if __debug__ is (i.e., if Python was not run
with the -O option). It is disabled by default when pyglet is “frozen”
within a py2exe or py2app library archive.

	shadow_window
	By default, pyglet creates a hidden window with a GL context when
pyglet.gl is imported. This allows resources to be loaded before
the application window is created, and permits GL objects to be
shared between windows even after they’ve been closed. You can
disable the creation of the shadow window by setting this option to
False.

Some OpenGL driver implementations may not support shared OpenGL
contexts and may require disabling the shadow window (and all resources
must be loaded after the window using them was created). Recommended
for advanced developers only.

New in version 1.1.

	vsync
	If set, the pyglet.window.Window.vsync property is ignored, and
this option overrides it (to either force vsync on or off). If unset,
or set to None, the pyglet.window.Window.vsync property behaves
as documented.

	search_local_libs
	If False, pyglet won’t try to search for libraries in the script
directory and its lib subdirectory. This is useful to load a local
library instead of the system installed version. This option is set
to True by default.

New in version 1.2.

Environment settings

Options in the pyglet.options dictionary can have defaults set
through the operating system’s environment variable. The following table
shows which environment variable is used for each option:

	Environment variable

	pyglet.options key

	Type

	Default value

	PYGLET_AUDIO

	audio

	List of strings

	directsound,openal,alsa,silent

	PYGLET_DEBUG_GL

	debug_gl

	Boolean

	1 [1]

[1]
Defaults to 1 unless Python is run with -O or from a
frozen executable.

Debugging tools

pyglet includes a number of debug paths that can be enabled during or before
application startup. These were primarily developed to aid in debugging
pyglet itself, however some of them may also prove useful for understanding
and debugging pyglet applications.

Each debug option is a key in the pyglet.options dictionary.
Options can be set directly on the dictionary before any other modules
are imported:

import pyglet
pyglet.options['debug_gl'] = False

They can also be set with environment variables before pyglet is imported.
The corresponding environment variable for each option is the string
PYGLET_ prefixed to the uppercase option key. For example, the
environment variable for debug_gl is PYGLET_DEBUG_GL. Boolean options
are set or unset with 1 and 0 values.

A summary of the debug environment variables appears in the table below.

	Option

	Environment variable

	Type

	debug_font

	PYGLET_DEBUG_FONT

	bool

	debug_gl

	PYGLET_DEBUG_GL

	bool

	debug_gl_trace

	PYGLET_DEBUG_GL_TRACE

	bool

	debug_gl_trace_args

	PYGLET_DEBUG_GL_TRACE_ARGS

	bool

	debug_graphics_batch

	PYGLET_DEBUG_GRAPHICS_BATCH

	bool

	debug_lib

	PYGLET_DEBUG_LIB

	bool

	debug_media

	PYGLET_DEBUG_MEDIA

	bool

	debug_trace

	PYGLET_DEBUG_TRACE

	bool

	debug_trace_args

	PYGLET_DEBUG_TRACE_ARGS

	bool

	debug_trace_depth

	PYGLET_DEBUG_TRACE_DEPTH

	int

	debug_win32

	PYGLET_DEBUG_WIN32

	bool

	debug_x11

	PYGLET_DEBUG_X11

	bool

The debug_media and debug_font options are used to debug the
pyglet.media and pyglet.font modules, respectively.
Their behaviour is platform-dependent and useful only for pyglet developers.

The remaining debug options are detailed below.

Debugging OpenGL

The debug_graphics_batch option causes all
Batch objects to dump their
rendering tree to standard output before drawing, after any change (so two
drawings of the same tree will only dump once). This is useful to debug
applications making use of Group and
Batch rendering.

Error checking

The debug_gl option intercepts most OpenGL calls and calls glGetError
afterwards (it only does this where such a call would be legal). If an error
is reported, an exception is raised immediately.

This option is enabled by default unless the -O flag (optimisation) is
given to Python, or the script is running from within a py2exe or py2app
package.

Tracing

The debug_gl_trace option causes all OpenGL functions called to be dumped
to standard out. When combined with debug_gl_trace_args, the arguments
given to each function are also printed (they are abbreviated if necessary to
avoid dumping large amounts of buffer data).

Tracing execution

The debug_trace option enables Python-wide function tracing. This causes
every function call to be printed to standard out. Due to the large number of
function calls required just to initialise pyglet, it is recommended to
redirect standard output to a file when using this option.

The debug_trace_args option additionally prints the arguments to each
function call.

When debug_trace_depth is greater than 1 the caller(s) of each function
(and their arguments, if debug_trace_args is set) are also printed. Each
caller is indented beneath the callee. The default depth is 1, specifying
that no callers are printed.

Platform-specific debugging

The debug_lib option causes the path of each loaded library to be printed
to standard out. This is performed by the undocumented pyglet.lib module,
which on Linux and Mac OS X must sometimes follow complex procedures to find
the correct library. On Windows not all libraries are loaded via this module,
so they will not be printed (however, loading Windows DLLs is sufficiently
simple that there is little need for this information).

Linux

X11 errors are caught by pyglet and suppressed, as there are plenty of X
servers in the wild that generate errors that can be safely ignored.
The debug_x11 option causes these errors to be dumped to standard out,
along with a traceback of the Python stack (this may or may not correspond to
the error, depending on whether or not it was reported asynchronously).

Windows

The debug_win32 option causes all library calls into user32.dll,
kernel32.dll and gdi32.dll to be intercepted. Before each library
call SetLastError(0) is called, and afterwards GetLastError() is
called. Any errors discovered are written to a file named
debug_win32.log. Note that an error is only valid if the function called
returned an error code, but the interception function does not check this.

Migrating from pyglet 2.0

pyglet 2.1 contains several small, but breaking changes. Some of these are
usibility improvements, and some are in the interest of improving the quality
of the code base. If you are upgrading from pyglet 2.0 and your game or project
has suddenly stopped working, this is the place for you. The following sections
should hopefully get you up and running again without too much effort. If you
are having an issue that is not covered here, please open up an issue ticket on
Github [https://github.com/pyglet/pyglet/issues] so that we can add it.

Window “HiDPI” support

TBD

Labels & Text Layouts

The positional argument order for text Labels and Layouts was not consistent
in previous pyglet releases. This has been refactored to make things more
consistent, with the goal of making it easier to switch between Layouts or
create custom subclasses. All layouts now start with the same positional
argument ordering:

TextLayout(document, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)
ScrollableTextLayout(document, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)
IncrementalTextLayout(document, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)

The Label classes also follow a similar default argument ordering, with one
small exception: Label and HTMLLabel take “text” as the first argument instead
of “document”. Other than that, the rest of the positional arguments line up:

DocumentLabel(document, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)
Label(text, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)
HTMLLabel(text, x, y, z, width, height, anchor_x, anchor_y, rotation, ...)

The layouts and lables don’t share all of the same argument, so the rest of the
arguments will need to be provided as usual, where they differ. Please see the
API documents for full details.

Shapes

For consistency with the rest of the library, it was decided to represent
all angles in degrees instead of radians. Previously we had a mix of both,
which lead to some confusion. Using degrees also makes the API consistent
with Sprites and other rotatable objects.

The arguments for Line have changed slightly.
Instead of “width”, we now use “thickness”. This matches with other shapes
that are made up of line segments. For example the Box
shape, which already uses “width” (and height) to mean it’s overall size.
Going forward, any shape that is made up of lines should use thickness
for the width of those lines.

Controllers

The Controller interface has been changed slightly. Analog sticks and dpad
events now dispatch Vec2, instead of individual float
or boolean values. This can potentially save a few lines of code, and gives
easy access to several helper methods found on the Vec classes. For instance,
where you had to do this in the past:

@controller.event
def on_dpad_motion(controller, dpleft, dpright, dpup, dpdown):
 if dpleft:
 # move left
 if dpright:
 # move right
 if dpright and dpdown:
 # move diagonal, but have to normalize the values by yourself

You now get a Vec2 instead of booleans that can be used directly:

@controller.event
def on_dpad_motion(controller, vector):
 player_position += vector * PLAYER_SPEED
 # Easily normalize for diagonal values:
 player_position += vector.normalize() * PLAYER_SPEED

Vectors can also be useful for analog sticks, because it gives an easy way to
calculate dead-zones using abs. For example:

@controller.event
def on_stick_motion(controller, name, vector):
 if abs(vector) <= DEADZONE:
 return
 elif name == "leftstick":
 # Do something with the 2D vector
 elif name == "rightstick":
 # Do something with the 2D vector

Normalization of vectors can also be useful for some analog sticks. When dealing
with Controllers that have non-circular gates, the The absolute values of their
combined x and y axis can sometimes exceed 1.0. Vector normalization can ensure
that the maximum value stays within range. For example:

vector = min(vector, vector.normalize())

You can also of course directly access the individual Vec2.x & Vec2.y
attributes. See Vec2 for more details on vector types.

Gui

All widget events now dispatch the widget instance itself as the first argument.
This is similar to how Controller/Joystick events are implemented. In cases where
the same handler function is set to multiple widgets, this gives a way to determine
which widget has dispatched the event.

The ToggleButton and PushButton
widgets have a small change. Instead of the image arguments being named “pressed”
and “depressed”, they has been renamed to the correct “pressed” and “unpressed”.

Math module

In the math module, vector types (Vec2,
Vec3, Vec4) are now
immutable; all operations will return a new object. In addition, all vector
objects are now hashable. This has performance benefits, and matches how the Matrix
types are implemented. For all intents and purposes, the Vec types can be treated
as tuples.

Canvas module

The pyglet.canvas module has been renamed to pyglet.display, as the canvas
concept was never fully fleshed out. The canvas concept appears to have been
meant to allow arbitrary renderable areas. This can now be easily accomplished
with Framebuffers. The name display is a more accurate representation of what
the code in the module actually relates to. The usage is the same, minus the
name change:

my_display = pyglet.canvas.get_display() # old pyglet 2.0
my_display = pyglet.display.get_display() # new pyglet 2.1

pyglet

pyglet is a cross-platform games and multimedia package.

More information is available at http://www.pyglet.org

	
options = {'audio': ('xaudio2', 'directsound', 'openal', 'pulse', 'silent'), 'com_mta': False, 'debug_font': False, 'debug_gl': True, 'debug_gl_shaders': False, 'debug_gl_trace': False, 'debug_gl_trace_args': False, 'debug_graphics_batch': False, 'debug_input': False, 'debug_lib': False, 'debug_media': False, 'debug_texture': False, 'debug_trace': False, 'debug_trace_args': False, 'debug_trace_depth': 1, 'debug_trace_flush': True, 'debug_win32': False, 'debug_x11': False, 'dw_legacy_naming': False, 'headless': False, 'headless_device': 0, 'osx_alt_loop': False, 'scale_with_dpi': False, 'search_local_libs': True, 'shadow_window': True, 'vsync': None, 'win32_disable_shaping': False, 'win32_disable_xinput': False, 'win32_gdi_font': False}

	Global dict of pyglet options.

To change an option from its default, you must import
pyglet before any sub-packages. For example:

import pyglet
pyglet.options['debug_gl'] = False

The default options can be overridden from the OS environment. The
corresponding environment variable for each option key is prefaced by
PYGLET_. For example, in Bash you can set the debug_gl option with:

PYGLET_DEBUG_GL=True; export PYGLET_DEBUG_GL

For options requiring a tuple of values, separate each value with a comma.

The non-development options are:

	audio
	A Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence] of valid audio modules names. They will
be tried from first to last until either a driver loads or no entries
remain. See Choosing the audio driver for more information.

Valid driver names are:

	'xaudio2', the Windows Xaudio2 audio module (Windows only)

	'directsound', the Windows DirectSound audio module (Windows only)

	
	'pulse', the PulseAudio module
	(Linux only, otherwise nearly ubiquitous. Limited features; use
'openal' for more.)

	'openal', the OpenAL audio module
(A library may need to be installed on Windows and Linux)

	'silent', no audio

	debug_lib
	If True, prints the path of each dynamic library loaded.

	debug_gl
	If True, all calls to OpenGL functions are checked afterwards for
errors using glGetError. This will severely impact performance,
but provides useful exceptions at the point of failure. By default,
this option is enabled if __debug__ is (i.e., if Python was not run
with the -O option). It is disabled by default when pyglet is “frozen”
within a py2exe or py2app library archive.

	shadow_window
	By default, pyglet creates a hidden window with a GL context when
pyglet.gl is imported. This allows resources to be loaded before
the application window is created, and permits GL objects to be
shared between windows even after they’ve been closed. You can
disable the creation of the shadow window by setting this option to
False.

Some OpenGL driver implementations may not support shared OpenGL
contexts and may require disabling the shadow window (and all resources
must be loaded after the window using them was created). Recommended
for advanced developers only.

New in version 1.1.

	vsync
	If set, the pyglet.window.Window.vsync property is ignored, and
this option overrides it (to either force vsync on or off). If unset,
or set to None, the pyglet.window.Window.vsync property behaves
as documented.

	search_local_libs
	If False, pyglet won’t try to search for libraries in the script
directory and its lib subdirectory. This is useful to load a local
library instead of the system installed version. This option is set
to True by default.

New in version 1.2.

	
version = '2.1.dev2'

	The release version

pyglet.app

Application-wide functionality.

Applications

Most applications need only call run() after creating one or more
windows to begin processing events. For example, a simple application
consisting of one window is:

import pyglet

win = pyglet.window.Window()
pyglet.app.run()

Events

To handle events on the main event loop, instantiate it manually. The
following example exits the application as soon as any window is closed (the
default policy is to wait until all windows are closed):

event_loop = pyglet.app.EventLoop()

@event_loop.event
def on_window_close(window):
 event_loop.exit()

New in version 1.1.

Classes

	
class EventLoop

	The main run loop of the application.

Calling run begins the application event loop, which processes
operating system events, calls pyglet.clock.tick() to call
scheduled functions and calls pyglet.window.Window.on_draw() and
pyglet.window.Window.flip() to update window contents.

Applications can subclass EventLoop and override certain methods
to integrate another framework’s run loop, or to customise processing
in some other way. You should not in general override run(), as
this method contains platform-specific code that ensures the application
remains responsive to the user while keeping CPU usage to a minimum.

Methods

	
run(interval: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float] = 0.016666666666666666)

	Begin processing events, scheduled functions and window updates.

This method enters into the main event loop and, if the interval
argument is not changed, schedules calling the pyglet.window.Window.draw()
method. You can change the interval argument to suit your needs.

	Parameters:

	interval (None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float]) – Windows redraw interval, in seconds (framerate).
If interval == 0, windows will redraw as fast as possible.
This can saturate a CPU core, so do not do this unless GPU bound.
If interval is None, pyglet will not schedule calls to the
pyglet.window.Window.draw() method. Users must schedule
this themselves for each Window (or call it on-demand). This allows
setting a custom framerate per window, or changing framerate during
runtime (see example in the documentation).

This method returns when has_exit is set to True. IE: when
exit() is called.

Developers are discouraged from overriding the run method, as the
implementation is platform-specific.

	
exit() → None [https://docs.python.org/3/library/constants.html#None]

	Safely exit the event loop at the end of the current iteration.

This method is a thread-safe equivalent for setting
has_exit to True. All waiting threads will be
interrupted (see sleep()).

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
sleep(timeout: float [https://docs.python.org/3/library/functions.html#float]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Wait for some amount of time, or until the has_exit flag
is set or exit() is called.

This method is thread-safe.

	Parameters:

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Time to sleep, in seconds.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

New in version 1.2.

Events

	
on_enter()

	The event loop is about to begin.

This is dispatched when the event loop is prepared to enter
the main run loop, and represents the last chance for an
application to initialise itself.

	
on_exit()

	The event loop is about to exit.

After dispatching this event, the run() method returns (the
application may not actually exit if you have more code
following the run() invocation).

	
on_window_close(window: Window)

	A window was closed.

This event is dispatched when a window is closed. It is not
dispatched if the window’s close button was pressed but the
window did not close.

The default handler calls exit() if no more windows are
open. You can override this handler to base your application exit
on some other policy.

Attributes

	
has_exit

	Flag indicating if the event loop will exit in
the next iteration. When set, all waiting threads are interrupted (see
sleep()).

Thread-safe since pyglet 1.2.

Methods (internal)

	
enter_blocking() → None [https://docs.python.org/3/library/constants.html#None]

	Called by pyglet internal processes when the operating system
is about to block due to a user interaction. For example, this
is common when the user begins resizing or moving a window.

This method provides the event loop with an opportunity to set up
an OS timer on the platform event loop, which will continue to
be invoked during the blocking operation.

The default implementation ensures that idle() continues to be
called as documented.
:rtype: None [https://docs.python.org/3/library/constants.html#None]

New in version 1.2.

	
static exit_blocking() → None [https://docs.python.org/3/library/constants.html#None]

	Called by pyglet internal processes when the blocking operation
completes. See enter_blocking().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
idle() → None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float]

	Called during each iteration of the event loop.

The method is called immediately after any window events (i.e., after
any user input). The method can return a duration after which
the idle method will be called again. The method may be called
earlier if the user creates more input events. The method
can return None to only wait for user events.

For example, return 1.0 to have the idle method called every
second, or immediately after any user events.

The default implementation dispatches the
pyglet.window.Window.on_draw() event for all windows and uses
pyglet.clock.tick() and pyglet.clock.get_sleep_time()
on the default clock to determine the return value.

This method should be overridden by advanced users only. To have
code execute at regular intervals, use the
pyglet.clock.schedule() methods.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	The number of seconds before the idle method should
be called again, or None to block for user input.

	
__init__() → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
class PlatformEventLoop

	Abstract class, implementation depends on platform.

New in version 1.2.

	
__init__() → None [https://docs.python.org/3/library/constants.html#None]

	

	
dispatch_posted_events() → None [https://docs.python.org/3/library/constants.html#None]

	Immediately dispatch all pending events.

Normally this is called automatically by the runloop iteration.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
is_running() → bool [https://docs.python.org/3/library/functions.html#bool]

	Return True if the event loop is currently processing, or False
if it is blocked or not activated.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
notify() → None [https://docs.python.org/3/library/constants.html#None]

	Notify the event loop that something needs processing.

If the event loop is blocked, it will unblock and perform an iteration
immediately. If the event loop is running, another iteration is
scheduled for immediate execution afterward.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
post_event(

	dispatcher: EventDispatcher,

	event: str [https://docs.python.org/3/library/stdtypes.html#str],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Post an event into the main application thread.

The event is queued internally until the run() method’s thread
is able to dispatch the event. This method can be safely called
from any thread.

If the method is called from the run() method’s thread (for
example, from within an event handler), the event may be dispatched
within the same runloop iteration or the next one; the choice is
nondeterministic.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_timer(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], interval: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
start() → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
step(timeout: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float] = None)

	

	
stop() → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Functions

	
run(interval: None [https://docs.python.org/3/library/constants.html#None] | float [https://docs.python.org/3/library/functions.html#float] = 0.016666666666666666) → None [https://docs.python.org/3/library/constants.html#None]

	Begin processing events, scheduled functions and window updates.

This is a convenience function, equivalent to:

pyglet.app.event_loop.run(interval)

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
exit() → None [https://docs.python.org/3/library/constants.html#None]

	Exit the application event loop.

Causes the application event loop to finish, if an event loop is currently
running. The application may not necessarily exit (for example, there may
be additional code following the run invocation).

This is a convenience function, equivalent to:

pyglet.app.event_loop.exit()

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Attributes

	
event_loop = <pyglet.app.base.EventLoop object>

	The global event loop. Applications can replace this
with their own subclass of EventLoop before calling
EventLoop.run().

	
platform_event_loop = <pyglet.app.base.PlatformEventLoop object>

	The platform-dependent event loop. Applications are strongly discouraged
from subclassing or replacing this PlatformEventLoop object.

	
windows = set()

	Set of all open windows (including invisible windows). Instances of
pyglet.window.Window are automatically added to this set upon
construction. The set uses weak references, so windows are removed from
the set when they are no longer referenced or are closed explicitly.

Exceptions

	
class AppException

	
	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

pyglet.clock

Precise framerate calculation function scheduling.

The clock module allows you to schedule functions
to run periodically, or for one-shot future execution. pyglet’s default
event loop (run()) keeps an internal instance of
a Clock, which is ticked automatically.

Note

Some internal modules will schedule items on the clock. If you
are using a custom event loop, always remember to tick the clock!

Scheduling

You can schedule a function to be called every time the clock is ticked:

def callback(dt):
 print(f"{dt} seconds since last callback")

clock.schedule(callback)

The schedule_interval method causes a function to be called every “n”
seconds:

clock.schedule_interval(callback, 0.5) # called twice a second

The schedule_once method causes a function to be called once “n” seconds
in the future:

clock.schedule_once(callback, 5) # called in 5 seconds

All the schedule methods will pass on any additional args or keyword args
you specify to the callback function:

def move(dt, velocity, sprite):
 sprite.position += dt * velocity

clock.schedule(move, velocity=5.0, sprite=alien)

You can cancel a function scheduled with any of these methods using
unschedule:

clock.unschedule(move)

Using multiple clocks

The clock functions are all relayed to an instance of
Clock which is initialised with the module. You can
get this instance to use directly:

clk = pyglet.clock.get_default()

You can also replace the default clock with your own:

myclk = pyglet.clock.Clock()
pyglet.clock.set_default(myclk)

Each clock maintains its own set of scheduled functions and frequency
measurement. Each clock must be “ticked” separately.

Multiple and derived clocks potentially allow you to separate “game-time” and
“wall-time”, or to synchronise your clock to an audio or video stream instead
of the system clock.

	
class Clock

	
	
__init__(

	time_function: ~typing.Callable = <built-in function perf_counter>,

) → None [https://docs.python.org/3/library/constants.html#None]

	Initialise a Clock, with optional custom time function.

You can provide a custom time function to return the elapsed
time of the application, in seconds. Defaults to time.perf_counter,
but can be replaced to allow for easy time dilation effects or game
pausing.

	
call_scheduled_functions(dt: float [https://docs.python.org/3/library/functions.html#float]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Call scheduled functions that elapsed on the last update_time.

This method is called automatically when the clock is ticked
(see tick()), so you need not call it
yourself in most cases.

	Parameters:

	dt (float [https://docs.python.org/3/library/functions.html#float]) – The elapsed time since the last update to pass to each
scheduled function. This is not used to calculate which
functions have elapsed.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

Returns: True if any functions were called, else False.

	
get_frequency() → float [https://docs.python.org/3/library/functions.html#float]

	Get the average clock update frequency of recent history.

The result is the average of a sliding window of the last “n” updates,
where “n” is some number designed to cover approximately 1 second.
This is the clock frequence, not the Window redraw rate (fps).

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_sleep_time(sleep_idle: bool [https://docs.python.org/3/library/functions.html#bool]) → float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	Get the time until the next item is scheduled, if any.

Applications can choose to continue receiving updates at the
maximum framerate during idle time (when no functions are scheduled),
or they can sleep through their idle time and allow the CPU to
switch to other processes or run in low-power mode.

If sleep_idle is True the latter behaviour is selected, and
None will be returned if there are no scheduled items.

Otherwise, if sleep_idle is False, or if any scheduled items
exist, a value of 0 is returned.

	Parameters:

	sleep_idle (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the application intends to sleep through its idle
time; otherwise it will continue ticking at the maximum
frame rate allowed.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	
schedule(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule a function to be called every tick.

The scheduled function should have a prototype that includes dt
as the first argument, which gives the elapsed time in seconds since
the last clock tick. Any additional args or kwargs given to this
method are passed on to the callback:

def callback(dt, *args, **kwargs):
 pass

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Note

Functions scheduled using this method will be called
every tick by the default pyglet event loop, which can
lead to high CPU usage. It is usually better to use
schedule_interval() unless
this is desired.

	
schedule_interval(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule a function to be called every interval seconds.

To schedule a function to be called at 60Hz (60fps), you would use 1/60
for the interval, and so on. If pyglet is unable to call the function on
time, the schedule will be skipped (not accumulated). This can occur if the
main thread is overloaded, or other hard blocking calls taking place.

The callback function prototype is the same as for
schedule().
:rtype: None [https://docs.python.org/3/library/constants.html#None]

Note

Specifying an interval of 0 will prevent the function from
being called again. If you want to schedule a function to be called
as often as possible, see schedule().

	
schedule_interval_for_duration(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	duration: float [https://docs.python.org/3/library/functions.html#float],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Temporarily schedule a function to be called every interval seconds.

This method will schedule a function to be called every interval
seconds (see schedule_interval()), but
will automatically unschedule it after duration seconds.

The callback function prototype is the same as for
schedule().

	Args:

	
	func:
	The function to call when the timer lapses.

	interval:
	The number of seconds to wait between each call.

	duration:
	The number of seconds for which the function is scheduled.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_interval_soft(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule a function to be called approximately every interval seconds.

This method is similar to schedule_interval(),
except that the clock will move the interval out of phase with other
scheduled functions in order to distribute CPU load more evenly.

This is useful for functions that need to be called regularly,
but not relative to the initial start time. pyglet.media
does this for scheduling audio buffer updates, which need to occur
regularly – if all audio updates are scheduled at the same time
(for example, mixing several tracks of a music score, or playing
multiple videos back simultaneously), the resulting load on the
CPU is excessive for those intervals but idle outside. Using
the soft interval scheduling, the load is more evenly distributed.

Soft interval scheduling can also be used as an easy way to schedule
graphics animations out of phase; for example, multiple flags
waving in the wind.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_once(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	delay: float [https://docs.python.org/3/library/functions.html#float],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	Schedule a function to be called once after delay seconds.

The callback function prototype is the same as for
schedule().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static sleep(microseconds: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
tick(poll: bool [https://docs.python.org/3/library/functions.html#bool] = False) → float [https://docs.python.org/3/library/functions.html#float]

	Signify that one frame has passed.

This will call any scheduled functions that have elapsed,
and returns the number of seconds since the last time this
method has been called. The first time this method is called,
0 is returned.

	Parameters:

	poll (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the function will call any scheduled functions
but will not sleep or busy-wait for any reason. Recommended
for advanced applications managing their own sleep timers
only.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
unschedule(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → None [https://docs.python.org/3/library/constants.html#None]

	Remove a function from the schedule.

If the function appears in the schedule more than once, all occurrences
are removed. If the function was not scheduled, no error is raised.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update_time() → float [https://docs.python.org/3/library/functions.html#float]

	Get the elapsed time since the last call to update_time.

This updates the clock’s internal measure of time and returns
the difference (in seconds) since the last time it was called.
The first call of this method always returns 0.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_default() → Clock

	Get the pyglet default Clock.

Return the Clock instance that is used by all
module-level clock functions.

	Return type:

	Clock

	
get_frequency() → float [https://docs.python.org/3/library/functions.html#float]

	
	See:

	get_frequency().

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_sleep_time(sleep_idle: bool [https://docs.python.org/3/library/functions.html#bool]) → float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	get_sleep_time().

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	
schedule(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], *args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	schedule().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_interval(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	*args: Any [https://docs.python.org/3/library/typing.html#typing.Any],

	**kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any],

) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	schedule_interval().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_interval_for_duration(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	duration: float [https://docs.python.org/3/library/functions.html#float],

	*args,

	**kwargs,

) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	schedule_interval_for_duration().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_interval_soft(

	func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable],

	interval: float [https://docs.python.org/3/library/functions.html#float],

	*args,

	**kwargs,

) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	schedule_interval_soft().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
schedule_once(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], delay: float [https://docs.python.org/3/library/functions.html#float], *args, **kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	schedule_once().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_default(default: Clock) → None [https://docs.python.org/3/library/constants.html#None]

	Set the default clock to use for all module-level functions.

By default, an instance of Clock is used.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
tick(poll: bool [https://docs.python.org/3/library/functions.html#bool] = False) → float [https://docs.python.org/3/library/functions.html#float]

	
	See:

	tick().

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
unschedule(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → None [https://docs.python.org/3/library/constants.html#None]

	
	See:

	unschedule().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

pyglet.customtypes

Holds type aliases used throughout the codebase.

	
Buffer

	alias of Union [https://docs.python.org/3/library/typing.html#typing.Union][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray], memoryview [https://docs.python.org/3/library/stdtypes.html#memoryview], Array]

	
HorizontalAlign

	alias of Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘left’, ‘center’, ‘right’]

	
AnchorX

	alias of Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘left’, ‘center’, ‘right’]

	
AnchorY

	alias of Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘top’, ‘bottom’, ‘center’, ‘baseline’]

	
ContentVAlign

	alias of Literal [https://docs.python.org/3/library/typing.html#typing.Literal][‘left’, ‘center’, ‘top’]

pyglet.event

Event dispatch framework.

All objects that produce events in pyglet implement EventDispatcher,
providing a consistent interface for registering and manipulating event
handlers. A commonly used event dispatcher is pyglet.window.Window.

Event types

For each event dispatcher there is a set of events that it dispatches; these
correspond with the type of event handlers you can attach. Event types are
identified by their name, for example, ‘’on_resize’’. If you are creating a
new class which implements EventDispatcher, you must call
EventDispatcher.register_event_type for each event type.

Attaching event handlers

An event handler is simply a function or method. You can attach an event
handler by setting the appropriate function on the instance:

def on_resize(width, height):
 # ...
dispatcher.on_resize = on_resize

There is also a convenience decorator that reduces typing:

@dispatcher.event
def on_resize(width, height):
 # ...

You may prefer to subclass and override the event handlers instead:

class MyDispatcher(DispatcherClass):
 def on_resize(self, width, height):
 # ...

Event handler stack

When attaching an event handler to a dispatcher using the above methods, it
replaces any existing handler (causing the original handler to no longer be
called). Each dispatcher maintains a stack of event handlers, allowing you to
insert an event handler “above” the existing one rather than replacing it.

There are two main use cases for “pushing” event handlers:

	Temporarily intercepting the events coming from the dispatcher by pushing a
custom set of handlers onto the dispatcher, then later “popping” them all
off at once.

	Creating “chains” of event handlers, where the event propagates from the
top-most (most recently added) handler to the bottom, until a handler
takes care of it.

Use EventDispatcher.push_handlers to create a new level in the stack and
attach handlers to it. You can push several handlers at once:

dispatcher.push_handlers(on_resize, on_key_press)

If your function handlers have different names to the events they handle, use
keyword arguments:

dispatcher.push_handlers(on_resize=my_resize, on_key_press=my_key_press)

After an event handler has processed an event, it is passed on to the
next-lowest event handler, unless the handler returns EVENT_HANDLED, which
prevents further propagation.

To remove all handlers on the top stack level, use
EventDispatcher.pop_handlers.

Note that any handlers pushed onto the stack have precedence over the
handlers set directly on the instance (for example, using the methods
described in the previous section), regardless of when they were set.
For example, handler foo is called before handler bar in the following
example:

dispatcher.push_handlers(on_resize=foo)
dispatcher.on_resize = bar

Dispatching events

pyglet uses a single-threaded model for all application code. Event
handlers are only ever invoked as a result of calling
EventDispatcher.dispatch_events`.

It is up to the specific event dispatcher to queue relevant events until they
can be dispatched, at which point the handlers are called in the order the
events were originally generated.

This implies that your application runs with a main loop that continuously
updates the application state and checks for new events:

while True:
 dispatcher.dispatch_events()
 # ... additional per-frame processing

Not all event dispatchers require the call to dispatch_events; check with
the particular class documentation.

Note

In order to prevent issues with garbage collection, the
EventDispatcher class only holds weak
references to pushed event handlers. That means the following example
will not work, because the pushed object will fall out of scope and be
collected:

dispatcher.push_handlers(MyHandlerClass())

Instead, you must make sure to keep a reference to the object before pushing
it. For example:

my_handler_instance = MyHandlerClass()
dispatcher.push_handlers(my_handler_instance)

	
exception EventException

	An exception raised when an event handler could not be attached.

	
class EventDispatcher

	Generic event dispatcher interface.

See the module docstring for usage.

	
dispatch_event(event_type: str [https://docs.python.org/3/library/stdtypes.html#str], *args: Any) → bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	Dispatch an event to the attached event handlers.

The event is propagated to all registered event handlers
in the stack, starting and the top and going down. If any
registered event handler returns EVENT_HANDLED, no further
handlers down the stack will receive this event.

This method has several possible return values. If any event
hander has returned EVENT_HANDLED, then this method will
also return EVENT_HANDLED. If not, this method will return
EVENT_UNHANDLED. If there were no events registered to
receive this event, False is returned.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool] | None [https://docs.python.org/3/library/constants.html#None]

	Returns:

	EVENT_HANDLED if any event handler returned EVENT_HANDLED;
EVENT_UNHANDLED if one or more event handlers were invoked
without any of them returning EVENT_HANDLED; False if no
event handlers were registered.

	
event(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Function decorator for an event handler.

If the function or method name matches the event name,
the decorator can be added without arguments. Likewise,
if the name does not match, you can provide the target
event name by passing it as an argument.

Name matches:

win = window.Window()

@win.event
def on_resize(self, width, height):
 # ...

Name does not match:

@win.event('on_resize')
def foo(self, width, height):
 # ...

	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	
pop_handlers() → None [https://docs.python.org/3/library/constants.html#None]

	Pop the top level of event handlers off the stack.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
push_handlers(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Push a new level onto the handler stack, and add 0 or more handlers.

This method first pushes a new level to the top of the handler stack.
It then attaches any handlers that were passed to this new level.

If keyword arguments are given, they name the event type to attach.
Otherwise, a callable’s __name__ attribute will be used. Any
other object may also be specified, in which case it will be searched
for callables with event names.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
classmethod register_event_type(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Register an event type with the dispatcher.

Before dispatching events, they must first be registered by name.
Registering event types allows the dispatcher to validate event
handler names as they are attached, and to search attached objects
for suitable handlers.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
remove_handler(name: str [https://docs.python.org/3/library/stdtypes.html#str], handler: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → None [https://docs.python.org/3/library/constants.html#None]

	Remove a single event handler.

The given event handler is removed from the first handler stack frame
it appears in. The handler must be the exact same callable as passed
to set_handler, set_handlers or
push_handlers(); and the name
must match the event type it is bound to.

No error is raised if the event handler is not set.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
remove_handlers(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Remove event handlers from the event stack.

See push_handlers() for the
accepted argument types. All handlers are removed from the first stack
frame that contains any of the given handlers. No error is raised if
any handler does not appear in that frame, or if no stack frame
contains any of the given handlers.

If the stack frame is empty after removing the handlers, it is
removed from the stack. Note that this interferes with the expected
symmetry of push_handlers() and
pop_handlers().

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_handler(name: str [https://docs.python.org/3/library/stdtypes.html#str], handler: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → None [https://docs.python.org/3/library/constants.html#None]

	Attach a single event handler.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_handlers(*args: Any [https://docs.python.org/3/library/typing.html#typing.Any], **kwargs: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Attach one or more event handlers to the top level of the handler stack.

See push_handlers() for the accepted
argument types.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
event_types: list [https://docs.python.org/3/library/stdtypes.html#list]

	

pyglet.font

Load fonts.

pyglet will automatically load any system-installed fonts. You can add additional fonts
(for example, from your program resources) using add_file() or
add_directory(). These fonts are then available in the same way as system-installed fonts:

from pyglet import font
font.add_file('action_man.ttf')
action_man = font.load('Action Man', 16)
or
from pyglet import resource
resource.add_font('action_man.ttf')
action_man = font.load('Action Man')

See the pyglet.font.base module for documentation on the base classes used
by this package.

	
add_directory(directory: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a directory of fonts to pyglet’s search path.

This function simply calls pyglet.font.add_file() for each file with a .ttf
extension in the given directory. Subdirectories are not searched.

	Parameters:

	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory that contains font files.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
add_file(font: str [https://docs.python.org/3/library/stdtypes.html#str] | BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a font to pyglet’s search path.

In order to load a font that is not installed on the system, you must
call this method to tell pyglet that it exists. You can supply
either a filename or any file-like object.

The font format is platform-dependent, but is typically a TrueType font
file containing a single font face. Note that to use a font added with this method,
you should pass the face name (not the file name) to :meth:pyglet.font.load() or any
other place where you normally specify a font.

	Parameters:

	font (str [https://docs.python.org/3/library/stdtypes.html#str] | BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO]) – Filename or file-like object to load fonts from.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
add_user_font(font: UserDefinedFontBase) → None [https://docs.python.org/3/library/constants.html#None]

	Add a custom font created by the user.

A strong reference needs to be applied to the font object,
otherwise pyglet may not find the font later.

	Parameters:

	font (UserDefinedFontBase) – A font class instance defined by user.

	Raises:

	Exception [https://docs.python.org/3/library/exceptions.html#Exception] – If font provided is not derived from UserDefinedFontBase.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
have_font(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if specified font name is available in the system database or user font database.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load(

	name: str [https://docs.python.org/3/library/stdtypes.html#str] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None,

	size: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	bold: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	italic: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	stretch: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Font

	Load a font for rendering.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str] | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) – Font family, for example, “Times New Roman”. If a list of names
is provided, the first one matching a known font is used. If no
font can be matched to the name(s), a default font is used. The default font
will be platform dependent.

	size (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Size of the font, in points. The returned font may be an exact
match or the closest available.

	bold (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – If True, a bold variant is returned, if one exists for the given
family and size. For some Font renderers, bold is the weight of the font, and a string
can be provided specifying the weight. For example, “semibold” or “light”.

	italic (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – If True, an italic variant is returned, if one exists for the given family and size. For some Font
renderers, italics may have an “oblique” variation which can be specified as a string.

	stretch (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – If True, a stretch variant is returned, if one exists for the given family and size. Currently only
supported by Windows through the DirectWrite font renderer. For example, “condensed” or “expanded”.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – float
The assumed resolution of the display device, for the purposes of
determining the pixel size of the font. Defaults to 96.

	Return type:

	Font

pyglet.font.user

This module defines the usage and creation of user defined fonts in Pyglet.

Previously, pyglet only supported font renderers that are built into the operating system, such as
FreeType, DirectWrite, or Quartz. However, there are situations in which a user may not want or need all the
features a font can provide. They just need to put characters in a particular order without the hassle of exporting
into a separate file.

The UserDefinedMappingFont is provided for most use cases, which will allow you to
make an internal font that can be used where a font_name is required to identify a font.

A user defined font is also identified by its name. The name you choose should be unique to ensure it will not conflict
with a system font. For example, do not use Arial, as that will collide with Windows systems.

With UserDefinedMappingFont you can pass a mapping of characters that point to your
ImageData.

mappings={'c': my_image_data, 'b': my_image_data, 'a': my_image_data}

For more custom behavior, a dict-like object can be used, such as a class.

class MyCustomMapping:
 def get(self, char: str) -> ImageData | None:
 # return ImageData if a character is found.
 # return None if no character is found

mappings = MyCustomMapping()

	Once your font is created, you also must register it within pyglet to use it. This can be done through the
	add_user_font() function.

When you register a user defined font, only those parameters will used to identify the font. If you have a font, but
want to have a bold enabled version. You must make a new instance of your font, but with the bold
parameter set as True. Same applies to the size parameter.

Scaling

By default, user font’s will not be scaled. In most use cases, you have a single font at a specific size that you
want to use.

There are cases where a user may want to scale their font to be used at any size. We provide the following function:
get_scaled_user_font(). By providing the user defined font instance, and a new size, you will
get back a new font instance that is scaled to the new size. This new instance must also be registered the same way as
the base font.

When specifying the size parameter, that value is used to determine the ratio of scaling between the new size. So
if your base font is a size of 12, creating a scaled version at size 24 will be double the size of the base.

Warning

The PIL library is a required dependency to use the scaling functionality.

New in version 2.0.15.

	
exception UserDefinedFontException

	An exception related to user font creation.

	
class UserDefinedFontBase

	Used as a base for all user defined fonts.

New in version 2.0.15.

	
glyph_renderer_class

	alias of UserDefinedGlyphRenderer

	
__init__(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	default_char: str [https://docs.python.org/3/library/stdtypes.html#str],

	size: int [https://docs.python.org/3/library/functions.html#int],

	ascent: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	descent: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	bold: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	italic: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	stretch: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: int [https://docs.python.org/3/library/functions.html#int] = 96,

	locale: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a user defined font.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the font. Used to identify the font. Must be unique to ensure it does not
collide with any system fonts.

	default_char (str [https://docs.python.org/3/library/stdtypes.html#str]) – If a character in a string is not found in the font, it will use this as fallback.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Font size, usually in pixels.

	ascent (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Maximum ascent above the baseline, in pixels. If None, the image height is used.

	descent (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Maximum descent below the baseline, in pixels. Usually negative.

	bold (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when bold is enabled for the font name.

	italic (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when italic is enabled for the font name.

	stretch (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when stretch is enabled for the font name.

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – The assumed resolution of the display device, for the purposes of determining the pixel size of the
font. Use a default of 96 for standard sizing.

	locale (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Used to specify the locale of this font.

	
enable_scaling(base_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the Family Name of the font as a string.

	
class UserDefinedMappingFont

	The class allows the creation of user defined fonts from a set of mappings.

New in version 2.0.15.

	
__init__(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	default_char: str [https://docs.python.org/3/library/stdtypes.html#str],

	size: int [https://docs.python.org/3/library/functions.html#int],

	mappings: DictLikeObject,

	ascent: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	descent: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	bold: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	italic: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	stretch: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: int [https://docs.python.org/3/library/functions.html#int] = 96,

	locale: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize the default parameters of your font.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the font. Must be unique to ensure it does not collide with any system fonts.

	default_char (str [https://docs.python.org/3/library/stdtypes.html#str]) – If a character in a string is not found in the font, it will use this as fallback.

	size (int [https://docs.python.org/3/library/functions.html#int]) – Font size. Should be in pixels. This value will affect scaling if enabled.

	mappings (DictLikeObject) – A dict or dict-like object with a get function.
The get function must take a string character, and output ImageData if
found. It also must return None if no character is found.

	ascent (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Maximum ascent above the baseline, in pixels. If None, the image height is used.

	descent (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Maximum descent below the baseline, in pixels. Usually negative.

	bold (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when bold is enabled for the font name.

	italic (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when italic is enabled for the font name.

	stretch (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, this font will be used when stretch is enabled for the font name.

	dpi (int [https://docs.python.org/3/library/functions.html#int]) – The assumed resolution of the display device, for the purposes of determining the pixel size of the
font. Use a default of 96 for standard sizing.

	locale (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Used to specify the locale of this font.

	
enable_scaling(base_size: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Enables scaling the font size.

	Parameters:

	base_size (int [https://docs.python.org/3/library/functions.html#int]) – The base size is used to calculate the ratio between new sizes and the original.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_glyphs(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.font.base.Glyph]

	Create and return a list of Glyphs for text.

If any characters do not have a known glyph representation in this font, a substitution will be made with
the default_char.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Glyph]

	
get_scaled_user_font(

	font_base: UserDefinedMappingFont,

	size: int [https://docs.python.org/3/library/functions.html#int],

) → UserDefinedMappingFont

	This function will return a new font instance which can scale it’s size based off the original base font.

Note

The scaling functionality requires the PIL library to be installed.

New in version 2.0.15.

	Parameters:

	
	font_base (UserDefinedMappingFont) – The base font object to create a new size from.

	size (int [https://docs.python.org/3/library/functions.html#int]) – The new font size. This will be scaled based on the ratio between the base size and the new size.

	Return type:

	UserDefinedMappingFont

pyglet.gl

OpenGL interface.

This package imports all OpenGL and registered OpenGL extension
functions. Functions have identical signatures to their C counterparts.

OpenGL is documented in full at the OpenGL Reference Pages [https://www.khronos.org/registry/OpenGL-Refpages/].

The OpenGL Programming Guide [http://opengl-redbook.com/], also known as “The Red Book”, is a popular
reference manual organised by topic. It is available in digital and paper
editions.

The following subpackages are imported into this “mega” package already
(and so are available by importing pyglet.gl):

	pyglet.gl.gl
	OpenGL

	pyglet.gl.gl.glext_arb
	ARB registered OpenGL extension functions

These subpackages are also available, but are not imported into this namespace
by default:

	pyglet.gl.glext_nv
	nVidia OpenGL extension functions

	pyglet.gl.agl
	AGL (Mac OS X OpenGL context functions)

	pyglet.gl.glx
	GLX (Linux OpenGL context functions)

	pyglet.gl.glxext_arb
	ARB registered GLX extension functions

	pyglet.gl.glxext_nv
	nvidia GLX extension functions

	pyglet.gl.wgl
	WGL (Windows OpenGL context functions)

	pyglet.gl.wglext_arb
	ARB registered WGL extension functions

	pyglet.gl.wglext_nv
	nvidia WGL extension functions

The information modules are provided for convenience, and are documented below.

	
exception ConfigException

	

	
exception ContextException

	

	
current_context = None

	The active OpenGL context.

You can change the current context by calling Context.set_current;
do not modify this global.

	Type:

	Context

New in version 1.1.

	
class GLException

	
	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class ObjectSpace

	
	
__init__()

	

	
class Config

	Graphics configuration.

A Config stores the preferences for OpenGL attributes such as the
number of auxiliary buffers, size of the colour and depth buffers,
double buffering, stencilling, multi- and super-sampling, and so on.

Different platforms support a different set of attributes, so these
are set with a string key and a value which is integer or boolean.

	Ivariables:

	
	double_bufferbool
	Specify the presence of a back-buffer for every color buffer.

	stereobool
	Specify the presence of separate left and right buffer sets.

	buffer_sizeint
	Total bits per sample per color buffer.

	aux_buffersint
	The number of auxiliary color buffers.

	sample_buffersint
	The number of multisample buffers.

	samplesint
	The number of samples per pixel, or 0 if there are no multisample
buffers.

	red_sizeint
	Bits per sample per buffer devoted to the red component.

	green_sizeint
	Bits per sample per buffer devoted to the green component.

	blue_sizeint
	Bits per sample per buffer devoted to the blue component.

	alpha_sizeint
	Bits per sample per buffer devoted to the alpha component.

	depth_sizeint
	Bits per sample in the depth buffer.

	stencil_sizeint
	Bits per sample in the stencil buffer.

	accum_red_sizeint
	Bits per pixel devoted to the red component in the accumulation
buffer.

	accum_green_sizeint
	Bits per pixel devoted to the green component in the accumulation
buffer.

	accum_blue_sizeint
	Bits per pixel devoted to the blue component in the accumulation
buffer.

	accum_alpha_sizeint
	Bits per pixel devoted to the alpha component in the accumulation
buffer.

	
__init__(**kwargs)

	Create a template config with the given attributes.

Specify attributes as keyword arguments, for example:

template = Config(double_buffer=True)

	
create_context(share)

	Create a GL context that satisifies this configuration.

	Deprecated:

	Use CanvasConfig.create_context.

	Parameters:

	
	shareContext
	If not None, a context with which to share objects with.

	Return type:

	Context

	Returns:

	The new context.

	
get_gl_attributes()

	Return a list of attributes set on this config.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (name, value)

	Returns:

	All attributes, with unset attributes having a value of
None.

	
is_complete()

	Determine if this config is complete and able to create a context.

Configs created directly are not complete, they can only serve
as templates for retrieving a supported config from the system.
For example, pyglet.window.Screen.get_matching_configs returns
complete configs.

	Deprecated:

	Use isinstance(config, CanvasConfig).

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	True if the config is complete and can create a context.

	
match(canvas)

	Return a list of matching complete configs for the given canvas.

New in version 1.2.

	Parameters:

	
	canvasCanvas
	Display to host contexts created from the config.

	Return type:

	list of DisplayConfig

	
debug = None

	

	
forward_compatible = None

	

	
major_version = None

	

	
minor_version = None

	

	
opengl_api = None

	

	
class DisplayConfig

	Bases: Config

An OpenGL configuration for a particular display.

Use Config.match to obtain an instance of this class.

New in version 1.2.

	Ivariables:

	
	canvasCanvas
	The canvas this config is valid on.

	
__init__(canvas, base_config)

	Create a template config with the given attributes.

Specify attributes as keyword arguments, for example:

template = Config(double_buffer=True)

	
create_context(share)

	Create a GL context that satisifies this configuration.

	Parameters:

	
	shareContext
	If not None, a context with which to share objects with.

	Return type:

	Context

	Returns:

	The new context.

	
is_complete()

	Determine if this config is complete and able to create a context.

Configs created directly are not complete, they can only serve
as templates for retrieving a supported config from the system.
For example, pyglet.window.Screen.get_matching_configs returns
complete configs.

	Deprecated:

	Use isinstance(config, CanvasConfig).

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	True if the config is complete and can create a context.

	
class Context

	An OpenGL context for drawing.

Use CanvasConfig.create_context to create a context.

	Ivariables:

	
	object_spaceObjectSpace
	An object which is shared between all contexts that share
GL objects.

	
__init__(config, context_share=None)

	

	
attach(canvas)

	

	
create_program(*sources: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], program_class=None)

	Create a ShaderProgram from OpenGL GLSL source.

This is a convenience method that takes one or more tuples of
(source_string, shader_type), and returns a
ShaderProgram instance.

source_string is OpenGL GLSL source code as a str, and shader_type
is the OpenGL shader type, such as “vertex” or “fragment”. See
Shader for more information.

Note

This method is cached. Given the same shader sources, the
same ShaderProgram instance will be returned. For more
control over the ShaderProgram lifecycle, it is recommended
to manually create Shaders and link ShaderPrograms.

New in version 2.0.10.

	
delete_buffer(buffer_id)

	Safely delete a Buffer object belonging to this context’s object
space.

This method behaves similarly to delete_texture, though for
glDeleteBuffers instead of glDeleteTextures.

	Parameters:

	
	buffer_idint
	The OpenGL name of the buffer to delete.

New in version 1.1.

	
delete_framebuffer(fbo_id)

	Safely delete a Framebuffer Object belonging to this context.

This method behaves similarly to delete_vao, though for
glDeleteFramebuffers instead of glDeleteVertexArrays.

	Parameters:

	
	fbo_idint
	The OpenGL name of the Framebuffer Object to delete.

New in version 2.0.10.

	
delete_renderbuffer(rbo_id)

	Safely delete a Renderbuffer Object belonging to this context’s
object space.

This method behaves similarly to delete_texture, though for
glDeleteRenderbuffers instead of glDeleteTextures.

	Parameters:

	
	rbo_idint
	The OpenGL name of the Shader Program to delete.

New in version 2.0.10.

	
delete_shader(shader_id)

	Safely delete a Shader belonging to this context’s object space.

This method behaves similarly to delete_texture, though for
glDeleteShader instead of glDeleteTextures.

	Parameters:

	
	shader_idint
	The OpenGL name of the Shader to delete.

New in version 2.0.10.

	
delete_shader_program(program_id)

	Safely delete a Shader Program belonging to this context’s
object space.

This method behaves similarly to delete_texture, though for
glDeleteProgram instead of glDeleteTextures.

	Parameters:

	
	program_idint
	The OpenGL name of the Shader Program to delete.

New in version 2.0.

	
delete_texture(texture_id)

	Safely delete a Texture belonging to this context’s object space.

This method will delete the texture immediately via
glDeleteTextures if the current context’s object space is the same
as this context’s object space and it is called from the main thread.

Otherwise, the texture will only be marked for deletion, postponing
it until any context with the same object space becomes active again.

This makes it safe to call from anywhere, including other threads.

	Parameters:

	
	texture_idint
	The OpenGL name of the Texture to delete.

	
delete_vao(vao_id)

	Safely delete a Vertex Array Object belonging to this context.

If this context is not the current context or this method is not
called from the main thread, its deletion will be postponed until
this context is next made active again.

Otherwise, this method will immediately delete the VAO via
glDeleteVertexArrays.

	Parameters:

	
	vao_idint
	The OpenGL name of the Vertex Array to delete.

New in version 2.0.

	
destroy()

	Release the context.

The context will not be useable after being destroyed. Each platform
has its own convention for releasing the context and the buffer(s)
that depend on it in the correct order; this should never be called
by an application.

	
detach()

	

	
get_info()

	Get the OpenGL information for this context.

New in version 1.2.

	Return type:

	GLInfo

	
set_current()

	

pyglet.graphics

Submodules

	pyglet.graphics.allocation

	pyglet.graphics.shader

	pyglet.graphics.vertexbuffer

	pyglet.graphics.vertexdomain

Details

Low-level graphics rendering and abstractions.

This module provides efficient abstractions over OpenGL objects, such as
Shaders and Buffers. It also provides classes for highly performant batched
rendering and grouping.

See the Shaders and Rendering for details on how to use this graphics API.

	
class Batch

	Manage a collection of drawables for batched rendering.

Many drawable pyglet objects accept an optional Batch argument in their
constructors. By giving a Batch to multiple objects, you can tell pyglet
that you expect to draw all of these objects at once, so it can optimise its
use of OpenGL. Hence, drawing a Batch is often much faster than drawing
each contained drawable separately.

The following example creates a batch, adds two sprites to the batch, and
then draws the entire batch:

batch = pyglet.graphics.Batch()
car = pyglet.sprite.Sprite(car_image, batch=batch)
boat = pyglet.sprite.Sprite(boat_image, batch=batch)

def on_draw():
 batch.draw()

While any drawables can be added to a Batch, only those with the same
draw mode, shader program, and group can be optimised together.

Internally, a Batch manages a set of VertexDomains along with
information about how the domains are to be drawn. To implement batching on
a custom drawable, get your vertex domains from the given batch instead of
setting them up yourself.

	
__init__()

	Create a graphics batch.

	
draw()

	Draw the batch.

	
draw_subset(vertex_lists)

	Draw only some vertex lists in the batch.

The use of this method is highly discouraged, as it is quite
inefficient. Usually an application can be redesigned so that batches
can always be drawn in their entirety, using draw.

The given vertex lists must belong to this batch; behaviour is
undefined if this condition is not met.

	Parameters:

	
	vertex_listssequence of VertexList or IndexedVertexList
	Vertex lists to draw.

	
get_domain(indexed, mode, group, program, attributes)

	Get, or create, the vertex domain corresponding to the given arguments.

	
invalidate()

	Force the batch to update the draw list.

This method can be used to force the batch to re-compute the draw list
when the ordering of groups has changed.

New in version 1.2.

	
migrate(vertex_list, mode, group, batch)

	Migrate a vertex list to another batch and/or group.

vertex_list and mode together identify the vertex list to migrate.
group and batch are new owners of the vertex list after migration.

The results are undefined if mode is not correct or if vertex_list
does not belong to this batch (they are not checked and will not
necessarily throw an exception immediately).

batch can remain unchanged if only a group change is desired.

	Parameters:

	
	vertex_list~pyglet.graphics.vertexdomain.VertexList
	A vertex list currently belonging to this batch.

	modeint
	The current GL drawing mode of the vertex list.

	group~pyglet.graphics.Group
	The new group to migrate to.

	batch~pyglet.graphics.Batch
	The batch to migrate to (or the current batch).

	
class Group

	Group of common OpenGL state.

Group provides extra control over how drawables are handled within a
Batch. When a batch draws a drawable, it ensures its group’s state is set;
this can include binding textures, shaders, or setting any other parameters.
It also sorts the groups before drawing.

In the following example, the background sprite is guaranteed to be drawn
before the car and the boat:

batch = pyglet.graphics.Batch()
background = pyglet.graphics.Group(order=0)
foreground = pyglet.graphics.Group(order=1)

background = pyglet.sprite.Sprite(background_image, batch=batch, group=background)
car = pyglet.sprite.Sprite(car_image, batch=batch, group=foreground)
boat = pyglet.sprite.Sprite(boat_image, batch=batch, group=foreground)

def on_draw():
 batch.draw()

	Parameters:

	
	orderint
	Set the order to render above or below other Groups.
Lower orders are drawn first.

	parent~pyglet.graphics.Group
	Group to contain this Group; its state will be set before this
Group’s state.

	Variables:

	
	visiblebool
	Determines whether this Group is visible in any of the Batches
it is assigned to. If False, objects in this Group will not
be rendered.

	batcheslist
	Read Only. A list of which Batches this Group is a part of.

	
__init__(order=0, parent=None)

	

	
set_state()

	Apply the OpenGL state change.

The default implementation does nothing.

	
set_state_recursive()

	Set this group and its ancestry.

Call this method if you are using a group in isolation: the
parent groups will be called in top-down order, with this class’s
set being called last.

	
unset_state()

	Repeal the OpenGL state change.

The default implementation does nothing.

	
unset_state_recursive()

	Unset this group and its ancestry.

The inverse of set_state_recursive.

	
property batches

	

	
property order

	

	
property visible

	

	
class ShaderGroup

	A group that enables and binds a ShaderProgram.

	
__init__(program, order=0, parent=None)

	

	
set_state()

	Apply the OpenGL state change.

The default implementation does nothing.

	
unset_state()

	Repeal the OpenGL state change.

The default implementation does nothing.

	
class TextureGroup

	A group that enables and binds a texture.

TextureGroups are equal if their textures’ targets and names are equal.

	
__init__(texture, order=0, parent=None)

	Create a texture group.

	Parameters:

	
	texture~pyglet.image.Texture
	Texture to bind.

	orderint
	Change the order to render above or below other Groups.

	parent~pyglet.graphics.Group
	Parent group.

	
set_state()

	Apply the OpenGL state change.

The default implementation does nothing.

	
draw(size, mode, **data)

	Draw a primitive immediately.

	Warning:

	This function is deprecated as of 2.0.4, and will be removed
in the next release.

	Parameters:

	
	sizeint
	Number of vertices given

	modegl primitive type
	OpenGL drawing mode, e.g. GL_TRIANGLES,
avoiding quotes.

	**datakeyword arguments for passing vertex attribute data.
	The keyword should be the vertex attribute name, and the
argument should be a tuple of (format, data). For example:
position=(‘f’, array)

	
draw_indexed(size, mode, indices, **data)

	Draw a primitive with indexed vertices immediately.

	Warning:

	This function is deprecated as of 2.0.4, and will be removed
in the next release.

	Parameters:

	
	sizeint
	Number of vertices given

	modeint
	OpenGL drawing mode, e.g. GL_TRIANGLES

	indicessequence of int
	Sequence of integers giving indices into the vertex list.

	**datakeyword arguments for passing vertex attribute data.
	The keyword should be the vertex attribute name, and the
argument should be a tuple of (format, data). For example:
position=(‘f’, array)

	
get_default_batch()

	

	
get_default_shader()

	

pyglet.graphics.allocation

Memory allocation algorithm for vertex arrays and buffers.

The region allocator is used to allocate vertex indices within a vertex
domain’s multiple buffers. (“Buffer” refers to any abstract buffer presented
by pyglet.graphics.vertexbuffer.

The allocator will at times request more space from the buffers. The current
policy is to double the buffer size when there is not enough room to fulfil an
allocation. The buffer is never resized smaller.

The allocator maintains references to free space only; it is the caller’s
responsibility to maintain the allocated regions.

	
exception AllocatorMemoryException

	The buffer is not large enough to fulfil an allocation.

Raised by Allocator methods when the operation failed due to
lack of buffer space. The buffer should be increased to at least
requested_capacity and then the operation retried (guaranteed to
pass second time).

	
__init__(requested_capacity)

	

	
class Allocator

	Buffer space allocation implementation.

	
__init__(capacity)

	Create an allocator for a buffer of the specified capacity.

	Parameters:

	
	capacityint
	Maximum size of the buffer.

	
alloc(size)

	Allocate memory in the buffer.

Raises AllocatorMemoryException if the allocation cannot be
fulfilled.

	Parameters:

	
	sizeint
	Size of region to allocate.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	Returns:

	Starting index of the allocated region.

	
dealloc(start, size)

	Free a region of the buffer.

	Parameters:

	
	startint
	Starting index of the region.

	sizeint
	Size of the region.

	
get_allocated_regions()

	Get a list of (aggregate) allocated regions.

The result of this method is (starts, sizes), where starts is
a list of starting indices of the regions and sizes their
corresponding lengths.

	Return type:

	(list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list])

	
get_fragmentation()

	Return fraction of free space that is not expandable.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_fragmented_free_size()

	Returns the amount of space unused, not including the final
free block.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_free_size()

	Return the amount of space unused.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_usage()

	Return fraction of capacity currently allocated.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
realloc(start, size, new_size)

	Reallocate a region of the buffer.

This is more efficient than separate dealloc and alloc calls, as
the region can often be resized in-place.

Raises AllocatorMemoryException if the allocation cannot be
fulfilled.

	Parameters:

	
	startint
	Current starting index of the region.

	sizeint
	Current size of the region.

	new_sizeint
	New size of the region.

	
set_capacity(size)

	Resize the maximum buffer size.

The capaity cannot be reduced.

	Parameters:

	
	sizeint
	New maximum size of the buffer.

	
capacity

	

	
sizes

	

	
starts

	

pyglet.graphics.shader

	
exception ShaderException

	

	
class Attribute

	Abstract accessor for an attribute in a mapped buffer.

	
__init__(name, location, count, gl_type, normalize)

	Create the attribute accessor.

	Parameters:

	
	namestr
	Name of the vertex attribute.

	locationint
	Location (index) of the vertex attribute.

	countint
	Number of components in the attribute.

	gl_typeint
	OpenGL type enumerant; for example, GL_FLOAT

	normalize: bool
	True if OpenGL should normalize the values

	
enable()

	Enable the attribute.

	
get_region(buffer, start, count)

	Map a buffer region using this attribute as an accessor.

The returned region consists of a contiguous array of component
data elements. For example, if this attribute uses 3 floats per
vertex, and the count parameter is 4, the number of floats mapped
will be 3 * 4 = 12.

	Parameters:

	
	bufferAttributeBufferObject
	The buffer to map.

	startint
	Offset of the first vertex to map.

	countint
	Number of vertices to map

	
set_pointer(ptr)

	Setup this attribute to point to the currently bound buffer at
the given offset.

offset should be based on the currently bound buffer’s ptr
member.

	Parameters:

	
	offsetint
	Pointer offset to the currently bound buffer for this
attribute.

	
set_region(buffer, start, count, data)

	Set the data over a region of the buffer.

	Parameters:

	
	bufferAbstractMappable`
	The buffer to modify.

	startint
	Offset of the first vertex to set.

	countint
	Number of vertices to set.

	dataseq
	A sequence of data components.

	
class ComputeShaderProgram

	OpenGL Compute Shader Program

	
__init__(source: str [https://docs.python.org/3/library/stdtypes.html#str])

	Create an OpenGL ComputeShaderProgram from source.

	
bind() → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
delete()

	

	
static dispatch(

	x: int [https://docs.python.org/3/library/functions.html#int] = 1,

	y: int [https://docs.python.org/3/library/functions.html#int] = 1,

	z: int [https://docs.python.org/3/library/functions.html#int] = 1,

	barrier: int [https://docs.python.org/3/library/functions.html#int] = 4294967295,

) → None [https://docs.python.org/3/library/constants.html#None]

	Launch one or more compute work groups.

The ComputeShaderProgram should be active (bound) before calling
this method. The x, y, and z parameters specify the number of local
work groups that will be dispatched in the X, Y and Z dimensions.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
static stop()

	

	
static unbind()

	

	
use() → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property id: int [https://docs.python.org/3/library/functions.html#int]

	

	
property uniform_blocks: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	

	
property uniforms

	

	
class Shader

	OpenGL shader.

Shader objects are compiled on instantiation.
You can reuse a Shader object in multiple ShaderPrograms.

shader_type is one of 'compute', 'fragment', 'geometry',
'tesscontrol', 'tessevaluation', or 'vertex'.

	
__init__(source_string: str [https://docs.python.org/3/library/stdtypes.html#str], shader_type: str [https://docs.python.org/3/library/stdtypes.html#str])

	

	
delete()

	

	
property id

	

	
class ShaderProgram

	OpenGL shader program.

	
__init__(*shaders: Shader)

	

	
bind()

	

	
delete()

	

	
static stop()

	

	
static unbind()

	

	
use()

	

	
vertex_list(count, mode, batch=None, group=None, **data)

	Create a VertexList.

	Parameters:

	
	countint
	The number of vertices in the list.

	modeint
	OpenGL drawing mode enumeration; for example, one of
GL_POINTS, GL_LINES, GL_TRIANGLES, etc.
This determines how the list is drawn in the given batch.

	batch~pyglet.graphics.Batch
	Batch to add the VertexList to, or None if a Batch will not be used.
Using a Batch is strongly recommended.

	group~pyglet.graphics.Group
	Group to add the VertexList to, or None if no group is required.

	**datastr or tuple
	Attribute formats and initial data for the vertex list.

	Return type:

	VertexList

	
vertex_list_indexed(

	count,

	mode,

	indices,

	batch=None,

	group=None,

	**data,

)

	Create a IndexedVertexList.

	Parameters:

	
	countint
	The number of vertices in the list.

	modeint
	OpenGL drawing mode enumeration; for example, one of
GL_POINTS, GL_LINES, GL_TRIANGLES, etc.
This determines how the list is drawn in the given batch.

	indicessequence of int
	Sequence of integers giving indices into the vertex list.

	batch~pyglet.graphics.Batch
	Batch to add the VertexList to, or None if a Batch will not be used.
Using a Batch is strongly recommended.

	group~pyglet.graphics.Group
	Group to add the VertexList to, or None if no group is required.

	**datastr or tuple
	Attribute formats and initial data for the vertex list.

	Return type:

	IndexedVertexList

	
property attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Attribute metadata dictionary

This property returns a dictionary containing metadata of all
Attributes that were introspected in this ShaderProgram. Modifying
this dictionary has no effect.

	
property id

	

	
property uniform_blocks: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A dictionary of introspected UniformBlocks

This property returns a dictionary of
UniformBlock instances.
They can be accessed by name. For example:

block = my_shader_program.uniform_blocks['WindowBlock']
ubo = block.create_ubo()

	
property uniforms: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Uniform metadata dictionary

This property returns a dictionary containing metadata of all
Uniforms that were introspected in this ShaderProgram. Modifying
this dictionary has no effect. To set or get a uniform, the uniform
name is used as a key on the ShaderProgram instance. For example:

my_shader_program[uniform_name] = 123
value = my_shader_program[uniform_name]

	
class ShaderSource

	GLSL source container for making source parsing simpler.

We support locating out attributes and applying #defines values.

NOTE: We do assume the source is neat enough to be parsed
this way and don’t contain several statements in one line.

	
__init__(source: str [https://docs.python.org/3/library/stdtypes.html#str], source_type: c_uint [https://docs.python.org/3/library/ctypes.html#ctypes.c_uint])

	Create a shader source wrapper.

	
validate() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the validated shader source.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class UniformBlock

	
	
__init__(program, name, index, size, uniforms)

	

	
create_ubo(index=0)

	Create a new UniformBufferObject from this uniform block.

	Parameters:

	
	indexint
	The uniform buffer index the returned UBO will bind itself to.
By default, this is 0.

	Return type:

	UniformBufferObject

	
index

	

	
name

	

	
program

	

	
size

	

	
uniforms

	

	
view_cls

	

	
class UniformBufferObject

	
	
__init__(view_class, buffer_size, index)

	

	
bind(index=None)

	

	
read()

	Read the byte contents of the buffer

	
buffer

	

	
property id

	

	
index

	

	
view

	

pyglet.graphics.vertexbuffer

Byte abstractions of OpenGL Buffer Objects.

Use create_buffer to create a Buffer Object.

Buffers can optionally be created “mappable” (incorporating the
AbstractMappable mix-in). In this case the buffer provides a get_region
method which provides the most efficient path for updating partial data within
the buffer.

	
class AbstractBuffer

	Abstract buffer of byte data.

	Ivariables:

	
	sizeint
	Size of buffer, in bytes

	ptrint
	Memory offset of the buffer, as used by the glVertexPointer
family of functions

	usageint
	OpenGL buffer usage, for example GL_DYNAMIC_DRAW

	
bind(target=34962)

	Bind this buffer to an OpenGL target.

	
delete()

	Delete this buffer, reducing system resource usage.

	
map()

	Map the entire buffer into system memory.

The mapped region must be subsequently unmapped with unmap before
performing any other operations on the buffer.

	Parameters:

	
	invalidatebool
	If True, the initial contents of the mapped block need not
reflect the actual contents of the buffer.

	Return type:

	POINTER(ctypes.c_ubyte)

	Returns:

	Pointer to the mapped block in memory

	
resize(size)

	Resize the buffer to a new size.

	Parameters:

	
	sizeint
	New size of the buffer, in bytes

	
set_data(data)

	Set the entire contents of the buffer.

	Parameters:

	
	datasequence of int or ctypes pointer
	The byte array to set.

	
set_data_region(data, start, length)

	Set part of the buffer contents.

	Parameters:

	
	datasequence of int or ctypes pointer
	The byte array of data to set

	startint
	Offset to start replacing data

	lengthint
	Length of region to replace

	
unbind()

	Reset the buffer’s OpenGL target.

	
unmap()

	Unmap a previously mapped memory block.

	
ptr = 0

	

	
size = 0

	

	
class AttributeBufferObject

	A buffer with system-memory backed store.

Updates to the data via set_data and set_data_region will be held
in local memory until buffer_data is called. The advantage is that
fewer OpenGL calls are needed, which can increasing performance at the
expense of system memory.

	
__init__(size, attribute, usage=35048)

	

	
get_region(start, count)

	

	
invalidate()

	

	
invalidate_region(start, count)

	

	
resize(size)

	Resize the buffer to a new size.

	Parameters:

	
	sizeint
	New size of the buffer, in bytes

	
set_region(start, count, data)

	

	
sub_data()

	Updates the buffer if any data has been changed or invalidated. Allows submitting multiple changes at once,
rather than having to call glBufferSubData for every change.

	
class BufferObject

	Lightweight representation of an OpenGL Buffer Object.

The data in the buffer is not replicated in any system memory (unless it
is done so by the video driver). While this can improve memory usage and
possibly performance, updates to the buffer are relatively slow.
The target of the buffer is GL_ARRAY_BUFFER internally to avoid
accidentally overriding other states when altering the buffer contents.
The intended target can be set when binding the buffer.

This class does not implement AbstractMappable, and so has no
get_region() method. See
MappableVertexBufferObject for a Buffer class
that does implement get_region().

	
__init__(size, usage=35048)

	

	
bind(target=34962)

	Bind this buffer to an OpenGL target.

	
bind_to_index_buffer()

	Binds this buffer as an index buffer on the active vertex array.

	
delete()

	Delete this buffer, reducing system resource usage.

	
invalidate()

	

	
map()

	Map the entire buffer into system memory.

The mapped region must be subsequently unmapped with unmap before
performing any other operations on the buffer.

	Parameters:

	
	invalidatebool
	If True, the initial contents of the mapped block need not
reflect the actual contents of the buffer.

	Return type:

	POINTER(ctypes.c_ubyte)

	Returns:

	Pointer to the mapped block in memory

	
map_range(start, size, ptr_type)

	

	
resize(size)

	Resize the buffer to a new size.

	Parameters:

	
	sizeint
	New size of the buffer, in bytes

	
set_data(data)

	Set the entire contents of the buffer.

	Parameters:

	
	datasequence of int or ctypes pointer
	The byte array to set.

	
set_data_region(data, start, length)

	Set part of the buffer contents.

	Parameters:

	
	datasequence of int or ctypes pointer
	The byte array of data to set

	startint
	Offset to start replacing data

	lengthint
	Length of region to replace

	
unbind()

	Reset the buffer’s OpenGL target.

	
unmap()

	Unmap a previously mapped memory block.

	
class PersistentBufferObject

	
	
__init__(size, attribute, vao)

	

	
bind(target=34962)

	Bind this buffer to an OpenGL target.

	
get_region(start, count)

	

	
invalidate()

	

	
invalidate_region(start, count)

	

	
map_range(start, size, ptr_type, flags=2)

	

	
resize(size)

	Resize the buffer to a new size.

	Parameters:

	
	sizeint
	New size of the buffer, in bytes

	
set_region(start, count, data)

	

	
sub_data()

	

	
unbind()

	Reset the buffer’s OpenGL target.

pyglet.graphics.vertexdomain

Manage related vertex attributes within a single vertex domain.

A vertex “domain” consists of a set of attribute descriptions that together
describe the layout of one or more vertex buffers which are used together to
specify the vertices in a primitive. Additionally, the domain manages the
buffers used to store the data and will resize them as necessary to accommodate
new vertices.

Domains can optionally be indexed, in which case they also manage a buffer
containing vertex indices. This buffer is grown separately and has no size
relation to the attribute buffers.

Applications can create vertices (and optionally, indices) within a domain
with the VertexDomain.create() method. This returns a
VertexList representing the list of vertices created. The vertex
attribute data within the group can be modified, and the changes will be made
to the underlying buffers automatically.

The entire domain can be efficiently drawn in one step with the
VertexDomain.draw() method, assuming all the vertices comprise
primitives of the same OpenGL primitive mode.

	
class IndexedVertexDomain

	Management of a set of indexed vertex lists.

Construction of an indexed vertex domain is usually done with the
create_domain() function.

	
__init__(program, attribute_meta, index_gl_type=5125)

	

	
create(count, index_count)

	Create an IndexedVertexList in this domain.

	Parameters:

	
	countint
	Number of vertices to create

	index_count
	Number of indices to create

	
draw(mode)

	Draw all vertices in the domain.

All vertices in the domain are drawn at once. This is the
most efficient way to render primitives.

	Parameters:

	
	modeint
	OpenGL drawing mode, e.g. GL_POINTS, GL_LINES, etc.

	
draw_subset(mode, vertex_list)

	Draw a specific IndexedVertexList in the domain.

The vertex_list parameter specifies a IndexedVertexList
to draw. Only primitives in that list will be drawn.

	Parameters:

	
	modeint
	OpenGL drawing mode, e.g. GL_POINTS, GL_LINES, etc.

	vertex_listIndexedVertexList
	Vertex list to draw.

	
get_index_region(start, count)

	Get a data from a region of the index buffer.

	Parameters:

	
	startint
	Start of the region to map.

	countint
	Number of indices to map.

	Return type:

	Array of int [https://docs.python.org/3/library/functions.html#int]

	
safe_index_alloc(count)

	Allocate indices, resizing the buffers if necessary.

	
safe_index_realloc(start, count, new_count)

	Reallocate indices, resizing the buffers if necessary.

	
set_index_region(start, count, data)

	

	
class IndexedVertexList

	A list of vertices within an IndexedVertexDomain that are
indexed. Use IndexedVertexDomain.create() to construct this list.

	
__init__(domain, start, count, index_start, index_count)

	

	
delete()

	Delete this group.

	
migrate(domain)

	Move this group from its current indexed domain and add to the
specified one. Attributes on domains must match. (In practice, used
to change parent state of some vertices).

	Parameters:

	
	domainIndexedVertexDomain
	Indexed domain to migrate this vertex list to.

	
resize(count, index_count)

	Resize this group.

	Parameters:

	
	countint
	New number of vertices in the list.

	index_countint
	New number of indices in the list.

	
property indices

	Array of index data.

	
class VertexDomain

	Management of a set of vertex lists.

Construction of a vertex domain is usually done with the
create_domain() function.

	
__init__(program, attribute_meta)

	

	
create(count, index_count=None)

	Create a VertexList in this domain.

	Parameters:

	
	countint
	Number of vertices to create.

	index_count: None
	Ignored for non indexed VertexDomains

	Return type:

	VertexList

	
draw(mode)

	Draw all vertices in the domain.

All vertices in the domain are drawn at once. This is the
most efficient way to render primitives.

	Parameters:

	
	modeint
	OpenGL drawing mode, e.g. GL_POINTS, GL_LINES, etc.

	
draw_subset(mode, vertex_list)

	Draw a specific VertexList in the domain.

The vertex_list parameter specifies a VertexList
to draw. Only primitives in that list will be drawn.

	Parameters:

	
	modeint
	OpenGL drawing mode, e.g. GL_POINTS, GL_LINES, etc.

	vertex_listVertexList
	Vertex list to draw.

	
safe_alloc(count)

	Allocate vertices, resizing the buffers if necessary.

	
safe_realloc(start, count, new_count)

	Reallocate vertices, resizing the buffers if necessary.

	
property is_empty

	

	
class VertexList

	A list of vertices within a VertexDomain. Use
VertexDomain.create() to construct this list.

	
__init__(domain, start, count)

	

	
delete()

	Delete this group.

	
draw(mode)

	Draw this vertex list in the given OpenGL mode.

	Parameters:

	
	modeint
	OpenGL drawing mode, e.g. GL_POINTS, GL_LINES, etc.

	
migrate(domain)

	Move this group from its current domain and add to the specified
one. Attributes on domains must match. (In practice, used to change
parent state of some vertices).

	Parameters:

	
	domainVertexDomain
	Domain to migrate this vertex list to.

	
resize(count, index_count=None)

	Resize this group.

	Parameters:

	
	countint
	New number of vertices in the list.

	index_count: None
	Ignored for non indexed VertexDomains

	
set_attribute_data(name, data)

	

pyglet.gui

Classes

	
class WidgetBase

	Attributes

	
x

	X coordinate of the widget.

	
y

	Y coordinate of the widget.

	
width

	Width of the widget.

	
height

	Height of the widget.

	
aabb

	Bounding box of the widget.

The “left”, “bottom”, “right”, and “top” coordinates of the
widget. This is expressed as (x, y, x + width, y + height).

	
__init__(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
class PushButton

	Bases: WidgetBase

Instance of a push button.

Triggers the event ‘on_press’ when it is clicked by the mouse.
Triggers the event ‘on_release’ when the mouse is released.

	
__init__(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	pressed: AbstractImage,

	unpressed: AbstractImage,

	hover: AbstractImage | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a push button.

	Parameters:

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – X coordinate of the push button.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Y coordinate of the push button.

	pressed (AbstractImage) – Image to display when the button is pressed.

	unpressed (AbstractImage) – Image to display when the button isn’t pressed.

	hover (AbstractImage | None [https://docs.python.org/3/library/constants.html#None]) – Image to display when the button is being hovered over.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the push button to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the push button.

	
on_mouse_drag(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	dx: int [https://docs.python.org/3/library/functions.html#int],

	dy: int [https://docs.python.org/3/library/functions.html#int],

	buttons: int [https://docs.python.org/3/library/functions.html#int],

	modifiers: int [https://docs.python.org/3/library/functions.html#int],

) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_motion(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], dx: int [https://docs.python.org/3/library/functions.html#int], dy: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_press(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_release(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_press(widget: PushButton) → None [https://docs.python.org/3/library/constants.html#None]

	Event: Dispatched when the button is clicked.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_release(widget: PushButton) → None [https://docs.python.org/3/library/constants.html#None]

	Event: Dispatched when the button is released.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update_groups(order: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property value

	Whether the button is pressed or not.

	
class ToggleButton

	Bases: PushButton

Instance of a toggle button.

Triggers the event ‘on_toggle’ when the mouse is pressed or released.

	
on_mouse_press(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_release(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_toggle(widget: ToggleButton, value: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	Event: returns True or False to indicate the current state.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
class Slider

	Bases: WidgetBase

Instance of a slider made of a base and a knob image.

Triggers the event ‘on_change’ when the knob position is changed.
The knob position can be changed by dragging with the mouse, or
scrolling the mouse wheel.

	
__init__(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	base: AbstractImage,

	knob: AbstractImage,

	edge: int [https://docs.python.org/3/library/functions.html#int] = 0,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a slider.

	Parameters:

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – X coordinate of the slider.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Y coordinate of the slider.

	base (AbstractImage) – Image to display as the background to the slider.

	knob (AbstractImage) – Knob that moves to show the position of the slider.

	edge (int [https://docs.python.org/3/library/functions.html#int]) – Pixels from the maximum and minimum position of the slider,
to the edge of the base image.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the slider to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the slider.

	
on_change(widget: Slider, value: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Event: Returns the current value when the slider is changed.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_drag(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	dx: int [https://docs.python.org/3/library/functions.html#int],

	dy: int [https://docs.python.org/3/library/functions.html#int],

	buttons: int [https://docs.python.org/3/library/functions.html#int],

	modifiers: int [https://docs.python.org/3/library/functions.html#int],

) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_press(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_release(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_scroll(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], scroll_x: int [https://docs.python.org/3/library/functions.html#int], scroll_y: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update_groups(order: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property value: float [https://docs.python.org/3/library/functions.html#float]

	Query or set the Widget’s value.

This property allows you to set the value of a Widget directly, without any
user input. This could be used, for example, to restore Widgets to a
previous state, or if some event in your program is meant to naturally
change the same value that the Widget controls. Note that events are not
dispatched when changing this property directly.

	
class TextEntry

	Bases: WidgetBase

Instance of a text entry widget. Allows the user to enter and submit text.

Triggers the event ‘on_commit’, when the user hits the Enter or Return key.
The current text string is passed along with the event.

	
__init__(

	text: str [https://docs.python.org/3/library/stdtypes.html#str],

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	width: int [https://docs.python.org/3/library/functions.html#int],

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	text_color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (0, 0, 0, 255),

	caret_color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (0, 0, 0, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a text entry widget.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initial text to display.

	x (int [https://docs.python.org/3/library/functions.html#int]) – X coordinate of the text entry widget.

	y (int [https://docs.python.org/3/library/functions.html#int]) – Y coordinate of the text entry widget.

	width (int [https://docs.python.org/3/library/functions.html#int]) – The width of the text entry widget.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The color of the outline box in RGBA format.

	text_color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The color of the text in RGBA format.

	caret_color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The color of the caret (when it is visible) in RGBA or RGB format.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the text entry widget to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of text entry widget.

	
on_commit(widget: TextEntry, text: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Event: dispatches the current text when commited via Enter/Return key.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_drag(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	dx: int [https://docs.python.org/3/library/functions.html#int],

	dy: int [https://docs.python.org/3/library/functions.html#int],

	buttons: int [https://docs.python.org/3/library/functions.html#int],

	modifiers: int [https://docs.python.org/3/library/functions.html#int],

) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_motion(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], dx: int [https://docs.python.org/3/library/functions.html#int], dy: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_press(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], buttons: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_text(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_text_motion(motion: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_text_motion_select(motion: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update_groups(order: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property focus: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
property height: int [https://docs.python.org/3/library/functions.html#int]

	Height of the widget.

	
property value: str [https://docs.python.org/3/library/stdtypes.html#str]

	Query or set the Widget’s value.

This property allows you to set the value of a Widget directly, without any
user input. This could be used, for example, to restore Widgets to a
previous state, or if some event in your program is meant to naturally
change the same value that the Widget controls. Note that events are not
dispatched when changing this property directly.

	
property width: int [https://docs.python.org/3/library/functions.html#int]

	Width of the widget.

pyglet.image

Submodules

	pyglet.image.atlas

	pyglet.image.animation

	pyglet.image.buffer

Details

Image load, capture and high-level texture functions.

Only basic functionality is described here; for full reference see the
accompanying documentation.

To load an image:

from pyglet import image
pic = image.load('picture.png')

The supported image file types include PNG, BMP, GIF, JPG, and many more,
somewhat depending on the operating system. To load an image from a file-like
object instead of a filename:

pic = image.load('hint.jpg', file=fileobj)

The hint helps the module locate an appropriate decoder to use based on the
file extension. It is optional.

Once loaded, images can be used directly by most other modules of pyglet. All
images have a width and height you can access:

width, height = pic.width, pic.height

You can extract a region of an image (this keeps the original image intact;
the memory is shared efficiently):

subimage = pic.get_region(x, y, width, height)

Remember that y-coordinates are always increasing upwards.

Drawing images

To draw an image at some point on the screen:

pic.blit(x, y, z)

This assumes an appropriate view transform and projection have been applied.

Some images have an intrinsic “anchor point”: this is the point which will be
aligned to the x and y coordinates when the image is drawn. By
default the anchor point is the lower-left corner of the image. You can use
the anchor point to center an image at a given point, for example:

pic.anchor_x = pic.width // 2
pic.anchor_y = pic.height // 2
pic.blit(x, y, z)

Texture access

If you are using OpenGL directly, you can access the image as a texture:

texture = pic.get_texture()

(This is the most efficient way to obtain a texture; some images are
immediately loaded as textures, whereas others go through an intermediate
form). To use a texture with pyglet.gl:

from pyglet.gl import *
glEnable(texture.target) # typically target is GL_TEXTURE_2D
glBindTexture(texture.target, texture.id)
... draw with the texture

Pixel access

To access raw pixel data of an image:

rawimage = pic.get_image_data()

(If the image has just been loaded this will be a very quick operation;
however if the image is a texture a relatively expensive readback operation
will occur). The pixels can be accessed as a string:

format = 'RGBA'
pitch = rawimage.width * len(format)
pixels = rawimage.get_data(format, pitch)

“format” strings consist of characters that give the byte order of each color
component. For example, if rawimage.format is ‘RGBA’, there are four color
components: red, green, blue and alpha, in that order. Other common format
strings are ‘RGB’, ‘LA’ (luminance, alpha) and ‘I’ (intensity).

The “pitch” of an image is the number of bytes in a row (this may validly be
more than the number required to make up the width of the image, it is common
to see this for word alignment). If “pitch” is negative the rows of the image
are ordered from top to bottom, otherwise they are ordered from bottom to top.

Retrieving data with the format and pitch given in ImageData.format and
ImageData.pitch avoids the need for data conversion (assuming you can make
use of the data in this arbitrary format).

Classes

Images

	
class AbstractImage

	Abstract class representing an image.

	Parameters:

	
	widthint
	Width of image

	heightint
	Height of image

	anchor_xint
	X coordinate of anchor, relative to left edge of image data

	anchor_yint
	Y coordinate of anchor, relative to bottom edge of image data

	
__init__(width, height)

	

	
blit(x, y, z=0)

	Draw this image to the active framebuffers.

The image will be drawn with the lower-left corner at
(x - anchor_x, y - anchor_y, z).

	
blit_into(source, x, y, z)

	Draw source on this image.

source will be copied into this image such that its anchor point
is aligned with the x and y parameters. If this image is a 3D
texture, the z coordinate gives the image slice to copy into.

Note that if source is larger than this image (or the positioning
would cause the copy to go out of bounds) then you must pass a
region of source to this method, typically using get_region().

	
blit_to_texture(target, level, x, y, z=0)

	Draw this image on the currently bound texture at target.

This image is copied into the texture such that this image’s anchor
point is aligned with the given x and y coordinates of the
destination texture. If the currently bound texture is a 3D texture,
the z coordinate gives the image slice to blit into.

	
get_image_data()

	Get an ImageData view of this image.

Changes to the returned instance may or may not be reflected in this
image.

	Return type:

	ImageData

New in version 1.1.

	
get_mipmapped_texture()

	Retrieve a Texture instance with all mipmap levels filled in.

	Return type:

	Texture

New in version 1.1.

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	AbstractImage

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
save(filename=None, file=None, encoder=None)

	Save this image to a file.

	Parameters:

	
	filenamestr
	Used to set the image file format, and to open the output file
if file is unspecified.

	filefile-like object or None
	File to write image data to.

	encoderImageEncoder or None
	If unspecified, all encoders matching the filename extension
are tried. If all fail, the exception from the first one
attempted is raised.

	
anchor_x = 0

	

	
anchor_y = 0

	

	
class BufferImage

	Bases: AbstractImage

An abstract framebuffer.

	
__init__(x, y, width, height)

	

	
get_image_data()

	Get an ImageData view of this image.

Changes to the returned instance may or may not be reflected in this
image.

	Return type:

	ImageData

New in version 1.1.

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	AbstractImage

	
format = ''

	The format string used for image data.

	
gl_buffer = 1029

	The OpenGL read and write target for this buffer.

	
gl_format = 0

	The OpenGL format constant for image data.

	
owner = None

	

	
class BufferImageMask

	Bases: BufferImage

A single bit of the stencil buffer.

	
format = 'R'

	The format string used for image data.

	
gl_format = 6401

	The OpenGL format constant for image data.

	
class ColorBufferImage

	Bases: BufferImage

A color framebuffer.

This class is used to wrap the primary color buffer (i.e., the back
buffer)

	
blit_to_texture(target, level, x, y, z)

	Draw this image on the currently bound texture at target.

This image is copied into the texture such that this image’s anchor
point is aligned with the given x and y coordinates of the
destination texture. If the currently bound texture is a 3D texture,
the z coordinate gives the image slice to blit into.

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
format = 'RGBA'

	The format string used for image data.

	
gl_format = 6408

	The OpenGL format constant for image data.

	
class DepthBufferImage

	Bases: BufferImage

The depth buffer.

	
blit_to_texture(target, level, x, y, z)

	Draw this image on the currently bound texture at target.

This image is copied into the texture such that this image’s anchor
point is aligned with the given x and y coordinates of the
destination texture. If the currently bound texture is a 3D texture,
the z coordinate gives the image slice to blit into.

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
format = 'R'

	The format string used for image data.

	
gl_format = 6402

	The OpenGL format constant for image data.

	
class Texture

	Bases: AbstractImage

An image loaded into video memory that can be efficiently drawn
to the framebuffer.

Typically, you will get an instance of Texture by accessing the texture
member of any other AbstractImage.

	Parameters:

	
	region_classclass (subclass of TextureRegion)
	Class to use when constructing regions of this texture.

	tex_coordstuple
	12-tuple of float, named (u1, v1, r1, u2, v2, r2, …). u, v, r
give the 3D texture coordinates for vertices 1-4. The vertices
are specified in the order bottom-left, bottom-right, top-right
and top-left.

	targetint
	The GL texture target (e.g., GL_TEXTURE_2D).

	levelint
	The mipmap level of this texture.

	
region_class

	alias of TextureRegion

	
__init__(width, height, target, tex_id)

	

	
bind(texture_unit: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Bind to a specific Texture Unit by number.

	
bind_image_texture(

	unit,

	level=0,

	layered=False,

	layer=0,

	access=35002,

	fmt=34836,

)

	Bind as an ImageTexture for use with a ComputeShaderProgram.

Note

OpenGL 4.3, or 4.2 with the GL_ARB_compute_shader extention is required.

	
blit(x, y, z=0, width=None, height=None)

	Draw this image to the active framebuffers.

The image will be drawn with the lower-left corner at
(x - anchor_x, y - anchor_y, z).

	
blit_into(source, x, y, z)

	Draw source on this image.

source will be copied into this image such that its anchor point
is aligned with the x and y parameters. If this image is a 3D
texture, the z coordinate gives the image slice to copy into.

Note that if source is larger than this image (or the positioning
would cause the copy to go out of bounds) then you must pass a
region of source to this method, typically using get_region().

	
classmethod create(

	width,

	height,

	target=3553,

	internalformat=32856,

	min_filter=None,

	mag_filter=None,

	fmt=6408,

	blank_data=True,

)

	Create a Texture

Create a Texture with the specified dimentions, target and format.
On return, the texture will be bound.

	Parameters:

	
	widthint
	Width of texture in pixels.

	heightint
	Height of texture in pixels.

	targetint
	GL constant giving texture target to use, typically GL_TEXTURE_2D.

	internalformatint
	GL constant giving internal format of texture; for example, GL_RGBA.
The internal format decides how the texture data will be stored internally.
If None, the texture will be created but not initialized.

	min_filterint
	The minifaction filter used for this texture, commonly GL_LINEAR or GL_NEAREST

	mag_filterint
	The magnification filter used for this texture, commonly GL_LINEAR or GL_NEAREST

	fmtint
	GL constant giving format of texture; for example, GL_RGBA.
The format specifies what format the pixel data we’re expecting to write
to the texture and should ideally be the same as for internal format.

	blank_databool
	Setting to True will initialize the texture data with all zeros. Setting False, will initialize Texture
with no data.

	Return type:

	Texture

	
delete()

	Delete this texture and the memory it occupies.
After this, it may not be used anymore.

	
get_image_data(z=0)

	Get the image data of this texture.

Changes to the returned instance will not be reflected in this
texture.

	Parameters:

	
	zint
	For 3D textures, the image slice to retrieve.

	Return type:

	ImageData

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	AbstractImage

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
get_transform(flip_x=False, flip_y=False, rotate=0)

	Create a copy of this image applying a simple transformation.

The transformation is applied to the texture coordinates only;
get_image_data() will return the untransformed data. The
transformation is applied around the anchor point.

	Parameters:

	
	flip_xbool
	If True, the returned image will be flipped horizontally.

	flip_ybool
	If True, the returned image will be flipped vertically.

	rotateint
	Degrees of clockwise rotation of the returned image. Only
90-degree increments are supported.

	Return type:

	TextureRegion

	
colors = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

	

	
default_mag_filter = 9729

	

	
default_min_filter = 9729

	

	
images = 1

	

	
level = 0

	

	
tex_coords = (0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0)

	

	
tex_coords_order = (0, 1, 2, 3)

	

	
property uv

	Tuple containing the left, bottom, right, top 2D texture coordinates.

	
x = 0

	

	
y = 0

	

	
z = 0

	

	
class TextureRegion

	Bases: Texture

A rectangular region of a texture, presented as if it were a separate texture.

	
__init__(x, y, z, width, height, owner)

	

	
blit_into(source, x, y, z)

	Draw source on this image.

source will be copied into this image such that its anchor point
is aligned with the x and y parameters. If this image is a 3D
texture, the z coordinate gives the image slice to copy into.

Note that if source is larger than this image (or the positioning
would cause the copy to go out of bounds) then you must pass a
region of source to this method, typically using get_region().

	
delete()

	Deleting a TextureRegion has no effect. Operate on the owning
texture instead.

	
get_image_data()

	Get the image data of this texture.

Changes to the returned instance will not be reflected in this
texture.

	Parameters:

	
	zint
	For 3D textures, the image slice to retrieve.

	Return type:

	ImageData

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	AbstractImage

	
class TileableTexture

	Bases: Texture

A texture that can be tiled efficiently.

Use create_for_image classmethod to construct.

	
blit_tiled(x, y, z, width, height)

	Blit this texture tiled over the given area.

The image will be tiled with the bottom-left corner of the destination
rectangle aligned with the anchor point of this texture.

	
classmethod create_for_image(image)

	

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	AbstractImage

Image Sequences

	
class AbstractImageSequence

	Abstract sequence of images.

The sequence is useful for storing image animations or slices of a volume.
For efficient access, use the texture_sequence member. The class
also implements the sequence interface (__len__, __getitem__,
__setitem__).

	
get_animation(period, loop=True)

	Create an animation over this image sequence for the given constant
framerate.

	:Parameters
	
	periodfloat
	Number of seconds to display each frame.

	loopbool
	If True, the animation will loop continuously.

	Return type:

	Animation

New in version 1.1.

	
get_texture_sequence()

	Get a TextureSequence.

	Return type:

	TextureSequence

New in version 1.1.

	
class TextureSequence

	Bases: AbstractImageSequence

Interface for a sequence of textures.

Typical implementations store multiple TextureRegion s within one
Texture so as to minimise state changes.

	
get_texture_sequence()

	Get a TextureSequence.

	Return type:

	TextureSequence

New in version 1.1.

	
class UniformTextureSequence

	Bases: TextureSequence

Interface for a sequence of textures, each with the same dimensions.

	Parameters:

	
	item_widthint
	Width of each texture in the sequence.

	item_heightint
	Height of each texture in the sequence.

	
property item_height

	

	
property item_width

	

	
class TextureGrid

	Bases: TextureRegion, UniformTextureSequence

A texture containing a regular grid of texture regions.

To construct, create an ImageGrid first:

image_grid = ImageGrid(...)
texture_grid = TextureGrid(image_grid)

The texture grid can be accessed as a single texture, or as a sequence
of TextureRegion. When accessing as a sequence, you can specify
integer indexes, in which the images are arranged in rows from the
bottom-left to the top-right:

assume the texture_grid is 3x3:
current_texture = texture_grid[3] # get the middle-left image

You can also specify tuples in the sequence methods, which are addressed
as row, column:

equivalent to the previous example:
current_texture = texture_grid[1, 0]

When using tuples in a slice, the returned sequence is over the
rectangular region defined by the slice:

returns center, center-right, center-top, top-right images in that
order:
images = texture_grid[(1,1):]
equivalent to
images = texture_grid[(1,1):(3,3)]

	
__init__(grid)

	

	
get(row, column)

	

	
columns = 1

	

	
item_height = 0

	

	
item_width = 0

	

	
items = ()

	

	
rows = 1

	

	
class Texture3D

	Bases: Texture, UniformTextureSequence

A texture with more than one image slice.

Use create_for_images or create_for_image_grid classmethod to
construct.

	
classmethod create_for_image_grid(grid, internalformat=6408)

	

	
classmethod create_for_images(images, internalformat=6408, blank_data=True)

	

	
item_height = 0

	

	
item_width = 0

	

	
items = ()

	

Patterns

	
class ImagePattern

	Abstract image creation class.

	
create_image(width, height)

	Create an image of the given size.

	Parameters:

	
	widthint
	Width of image to create

	heightint
	Height of image to create

	Return type:

	AbstractImage

	
class CheckerImagePattern

	Bases: ImagePattern

Create an image with a tileable checker image.

	
__init__(

	color1=(150, 150, 150, 255),

	color2=(200, 200, 200, 255),

)

	Initialise with the given colors.

	Parameters:

	
	color1(int, int, int, int)
	4-tuple of ints in range [0,255] giving RGBA components of
color to fill with. This color appears in the top-left and
bottom-right corners of the image.

	color2(int, int, int, int)
	4-tuple of ints in range [0,255] giving RGBA components of
color to fill with. This color appears in the top-right and
bottom-left corners of the image.

	
create_image(width, height)

	Create an image of the given size.

	Parameters:

	
	widthint
	Width of image to create

	heightint
	Height of image to create

	Return type:

	AbstractImage

	
class SolidColorImagePattern

	Bases: ImagePattern

Creates an image filled with a solid color.

	
__init__(color=(0, 0, 0, 0))

	Create a solid image pattern with the given color.

	Parameters:

	
	color(int, int, int, int)
	4-tuple of ints in range [0,255] giving RGBA components of
color to fill with.

	
create_image(width, height)

	Create an image of the given size.

	Parameters:

	
	widthint
	Width of image to create

	heightint
	Height of image to create

	Return type:

	AbstractImage

Data

	
class ImageData

	Bases: AbstractImage

An image represented as a string of unsigned bytes.

	Parameters:

	
	datastr
	Pixel data, encoded according to format and pitch.

	formatstr
	The format string to use when reading or writing data.

	pitchint
	Number of bytes per row. Negative values indicate a top-to-bottom
arrangement.

	
__init__(width, height, fmt, data, pitch=None)

	Initialise image data.

	Parameters:

	
	widthint
	Width of image data

	heightint
	Height of image data

	fmtstr
	A valid format string, such as ‘RGB’, ‘RGBA’, ‘ARGB’, etc.

	datasequence
	String or array/list of bytes giving the decoded data.

	pitchint or None
	If specified, the number of bytes per row. Negative values
indicate a top-to-bottom arrangement. Defaults to
width * len(format).

	
blit(x, y, z=0, width=None, height=None)

	Draw this image to the active framebuffers.

The image will be drawn with the lower-left corner at
(x - anchor_x, y - anchor_y, z).

	
blit_to_texture(target, level, x, y, z, internalformat=None)

	Draw this image to to the currently bound texture at target.

This image’s anchor point will be aligned to the given x and y
coordinates. If the currently bound texture is a 3D texture, the z
parameter gives the image slice to blit into.

If internalformat is specified, glTexImage is used to initialise
the texture; otherwise, glTexSubImage is used to update a region.

	
create_texture(cls, rectangle=False)

	Create a texture containing this image.

	Parameters:

	
	clsclass (subclass of Texture)
	Class to construct.

	rectanglebool
	Unused. kept for compatibility.

New in version 1.1.

	Return type:

	cls or cls.region_class

	
get_data(fmt=None, pitch=None)

	Get the byte data of the image.

	Parameters:

	
	fmtstr
	Format string of the return data.

	pitchint
	Number of bytes per row. Negative values indicate a
top-to-bottom arrangement.

New in version 1.1.

	Return type:

	sequence of bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_image_data()

	Get an ImageData view of this image.

Changes to the returned instance may or may not be reflected in this
image.

	Return type:

	ImageData

New in version 1.1.

	
get_mipmapped_texture()

	Return a Texture with mipmaps.

If set_mipmap_Image has been called with at least one image, the set
of images defined will be used. Otherwise, mipmaps will be
automatically generated.

	Return type:

	Texture

New in version 1.1.

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image data.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	ImageDataRegion

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
set_data(fmt, pitch, data)

	Set the byte data of the image.

	Parameters:

	
	fmtstr
	Format string of the return data.

	pitchint
	Number of bytes per row. Negative values indicate a
top-to-bottom arrangement.

	datastr or sequence of bytes
	Image data.

New in version 1.1.

	
set_mipmap_image(level, image)

	Set a mipmap image for a particular level.

The mipmap image will be applied to textures obtained via
get_mipmapped_texture.

	Parameters:

	
	levelint
	Mipmap level to set image at, must be >= 1.

	imageAbstractImage
	Image to set. Must have correct dimensions for that mipmap
level (i.e., width >> level, height >> level)

	
property format

	Format string of the data. Read-write.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class CompressedImageData

	Bases: AbstractImage

Image representing some compressed data suitable for direct uploading
to driver.

	
__init__(

	width,

	height,

	gl_format,

	data,

	extension=None,

	decoder=None,

)

	Construct a CompressedImageData with the given compressed data.

	Parameters:

	
	widthint
	Width of image

	heightint
	Height of image

	gl_formatint
	GL constant giving format of compressed data; for example,
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT.

	datasequence
	String or array/list of bytes giving compressed image data.

	extensionstr or None
	If specified, gives the name of a GL extension to check for
before creating a texture.

	decoderfunction(data, width, height) -> AbstractImage
	A function to decode the compressed data, to be used if the
required extension is not present.

	
blit_to_texture(target, level, x, y, z)

	Draw this image on the currently bound texture at target.

This image is copied into the texture such that this image’s anchor
point is aligned with the given x and y coordinates of the
destination texture. If the currently bound texture is a 3D texture,
the z coordinate gives the image slice to blit into.

	
get_mipmapped_texture()

	Retrieve a Texture instance with all mipmap levels filled in.

	Return type:

	Texture

New in version 1.1.

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
set_mipmap_data(level, data)

	Set data for a mipmap level.

Supplied data gives a compressed image for the given mipmap level.
The image must be of the correct dimensions for the level
(i.e., width >> level, height >> level); but this is not checked. If
any mipmap levels are specified, they are used; otherwise, mipmaps for
mipmapped_texture are generated automatically.

	Parameters:

	
	levelint
	Level of mipmap image to set.

	datasequence
	String or array/list of bytes giving compressed image data.
Data must be in same format as specified in constructor.

	
class ImageDataRegion

	Bases: ImageData

	
__init__(x, y, width, height, image_data)

	Initialise image data.

	Parameters:

	
	widthint
	Width of image data

	heightint
	Height of image data

	fmtstr
	A valid format string, such as ‘RGB’, ‘RGBA’, ‘ARGB’, etc.

	datasequence
	String or array/list of bytes giving the decoded data.

	pitchint or None
	If specified, the number of bytes per row. Negative values
indicate a top-to-bottom arrangement. Defaults to
width * len(format).

	
get_data(fmt=None, pitch=None)

	Get the byte data of the image.

	Parameters:

	
	fmtstr
	Format string of the return data.

	pitchint
	Number of bytes per row. Negative values indicate a
top-to-bottom arrangement.

New in version 1.1.

	Return type:

	sequence of bytes [https://docs.python.org/3/library/stdtypes.html#bytes], or str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_region(x, y, width, height)

	Retrieve a rectangular region of this image data.

	Parameters:

	
	xint
	Left edge of region.

	yint
	Bottom edge of region.

	widthint
	Width of region.

	heightint
	Height of region.

	Return type:

	ImageDataRegion

	
set_data(fmt, pitch, data)

	Set the byte data of the image.

	Parameters:

	
	fmtstr
	Format string of the return data.

	pitchint
	Number of bytes per row. Negative values indicate a
top-to-bottom arrangement.

	datastr or sequence of bytes
	Image data.

New in version 1.1.

Other Classes

	
class BufferManager

	Manages the set of framebuffers for a context.

Use get_buffer_manager() to obtain the instance of this class for the
current context.

	
__init__()

	

	
get_buffer_mask()

	Get a free bitmask buffer.

A bitmask buffer is a buffer referencing a single bit in the stencil
buffer. If no bits are free, ImageException is raised. Bits are
released when the bitmask buffer is garbage collected.

	Return type:

	BufferImageMask

	
get_color_buffer()

	Get the color buffer.

	Return type:

	ColorBufferImage

	
get_depth_buffer()

	Get the depth buffer.

	Return type:

	DepthBufferImage

	
static get_viewport()

	Get the current OpenGL viewport dimensions.

	Return type:

	4-tuple of float.

	Returns:

	Left, top, right and bottom dimensions.

	
class ImageGrid

	Bases: AbstractImage, AbstractImageSequence

An imaginary grid placed over an image allowing easy access to
regular regions of that image.

The grid can be accessed either as a complete image, or as a sequence
of images. The most useful applications are to access the grid
as a TextureGrid:

image_grid = ImageGrid(...)
texture_grid = image_grid.get_texture_sequence()

or as a Texture3D:

image_grid = ImageGrid(...)
texture_3d = Texture3D.create_for_image_grid(image_grid)

	
__init__(

	image,

	rows,

	columns,

	item_width=None,

	item_height=None,

	row_padding=0,

	column_padding=0,

)

	Construct a grid for the given image.

You can specify parameters for the grid, for example setting
the padding between cells. Grids are always aligned to the
bottom-left corner of the image.

	Parameters:

	
	imageAbstractImage
	Image over which to construct the grid.

	rowsint
	Number of rows in the grid.

	columnsint
	Number of columns in the grid.

	item_widthint
	Width of each column. If unspecified, is calculated such
that the entire image width is used.

	item_heightint
	Height of each row. If unspecified, is calculated such that
the entire image height is used.

	row_paddingint
	Pixels separating adjacent rows. The padding is only
inserted between rows, not at the edges of the grid.

	column_paddingint
	Pixels separating adjacent columns. The padding is only
inserted between columns, not at the edges of the grid.

	
get_image_data()

	Get an ImageData view of this image.

Changes to the returned instance may or may not be reflected in this
image.

	Return type:

	ImageData

New in version 1.1.

	
get_texture(rectangle=False)

	A Texture view of this image.

	Parameters:

	
	rectanglebool
	Unused. Kept for compatibility.

New in version 1.1.4..

	Return type:

	Texture

New in version 1.1.

	
get_texture_sequence()

	Get a TextureSequence.

	Return type:

	TextureSequence

New in version 1.1.

Functions

	
create(width, height, pattern=None)

	Create an image optionally filled with the given pattern.

	Parameters:

	
	widthint
	Width of image to create

	heightint
	Height of image to create

	patternImagePattern or None
	Pattern to fill image with. If unspecified, the image will
initially be transparent.

	Return type:

	AbstractImage

Note

You can make no assumptions about the return type; usually it will
be ImageData or CompressedImageData, but patterns are free to return
any subclass of AbstractImage.

	
get_buffer_manager()

	Get the buffer manager for the current OpenGL context.

	Return type:

	BufferManager

	
load(filename, file=None, decoder=None)

	Load an image from a file.

	Parameters:

	
	filenamestr
	Used to guess the image format, and to load the file if file is
unspecified.

	filefile-like object or None
	Source of image data in any supported format.

	decoderImageDecoder or None
	If unspecified, all decoders that are registered for the filename
extension are tried. If none succeed, the exception from the
first decoder is raised.

	Return type:

	AbstractImage

Note

You can make no assumptions about the return type; usually it will
be ImageData or CompressedImageData, but decoders are free to return
any subclass of AbstractImage.

	
load_animation(filename, file=None, decoder=None)

	Load an animation from a file.

Currently, the only supported format is GIF.

	Parameters:

	
	filenamestr
	Used to guess the animation format, and to load the file if file
is unspecified.

	filefile-like object or None
	File object containing the animation stream.

	decoderImageDecoder or None
	If unspecified, all decoders that are registered for the filename
extension are tried. If none succeed, the exception from the
first decoder is raised.

	Return type:

	Animation

	
get_max_texture_size()

	Query the maximum texture size available

Exceptions

	
class ImageException

	
	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class ImageEncodeException

	
	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class ImageDecodeException

	
	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

pyglet.image.atlas

Group multiple small images into larger textures.

This module is used by pyglet.resource to efficiently pack small
images into larger textures. TextureAtlas maintains one texture;
TextureBin manages a collection of atlases of a given size.

Example usage:

Load images from disk
car_image = pyglet.image.load('car.png')
boat_image = pyglet.image.load('boat.png')

Pack these images into one or more textures
bin = TextureBin()
car_texture = bin.add(car_image)
boat_texture = bin.add(boat_image)

The result of TextureBin.add() is a TextureRegion
containing the image. Once added, an image cannot be removed from a bin (or an
atlas); nor can a list of images be obtained from a given bin or atlas – it is
the application’s responsibility to keep track of the regions returned by the
add methods.

New in version 1.1.

	
exception AllocatorException

	The allocator does not have sufficient free space for the requested
image size.

	
class Allocator

	Rectangular area allocation algorithm.

Initialise with a given width and height, then repeatedly
call alloc to retrieve free regions of the area and protect that
area from future allocations.

Allocator uses a fairly simple strips-based algorithm. It performs best
when rectangles are allocated in decreasing height order.

	
__init__(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Create an Allocator of the given size.

	Parameters:

	
	widthint
	Width of the allocation region.

	heightint
	Height of the allocation region.

	
alloc(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Get a free area in the allocator of the given size.

After calling alloc, the requested area will no longer be used.
If there is not enough room to fit the given area AllocatorException
is raised.

	Parameters:

	
	widthint
	Width of the area to allocate.

	heightint
	Height of the area to allocate.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]

	Returns:

	The X and Y coordinates of the bottom-left corner of the
allocated region.

	
get_fragmentation() → float [https://docs.python.org/3/library/functions.html#float]

	Get the fraction of area that’s unlikely to ever be used, based on
current allocation behaviour.

This method is useful for debugging and profiling only.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_usage() → float [https://docs.python.org/3/library/functions.html#float]

	Get the fraction of area already allocated.

This method is useful for debugging and profiling only.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
height

	

	
strips

	

	
used_area

	

	
width

	

	
class TextureArrayBin

	Collection of texture arrays.

TextureArrayBin maintains a collection of texture arrays, and creates new
ones as necessary as the depth is exceeded.

	
__init__(

	texture_width: int [https://docs.python.org/3/library/functions.html#int] = 2048,

	texture_height: int [https://docs.python.org/3/library/functions.html#int] = 2048,

	max_depth: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
add(

	img: AbstractImage,

) → TextureArrayRegion

	Add an image into this texture array bin.

This method calls TextureArray.add for the first array that has room
for the image.

TextureArraySizeExceeded is raised if the image exceeds the dimensions of
texture_width and texture_height.

	Parameters:

	
	img~pyglet.image.AbstractImage
	The image to add.

	Return type:

	TextureArrayRegion

	Returns:

	The region of an array containing the newly added image.

	
class TextureAtlas

	Collection of images within a texture.

	
__init__(width: int [https://docs.python.org/3/library/functions.html#int] = 2048, height: int [https://docs.python.org/3/library/functions.html#int] = 2048) → None [https://docs.python.org/3/library/constants.html#None]

	Create a texture atlas of the given size.

	Parameters:

	
	widthint
	Width of the underlying texture.

	heightint
	Height of the underlying texture.

	
add(

	img: AbstractImage,

	border: int [https://docs.python.org/3/library/functions.html#int] = 0,

) → TextureRegion

	Add an image to the atlas.

This method will fail if the given image cannot be transferred
directly to a texture (for example, if it is another texture).
ImageData is the usual image type for this method.

AllocatorException will be raised if there is no room in the atlas
for the image.

	Parameters:

	
	img~pyglet.image.AbstractImage
	The image to add.

	borderint
	Leaves specified pixels of blank space around
each image added to the Atlas.

	Return type:

	TextureRegion

	Returns:

	The region of the atlas containing the newly added image.

	
class TextureBin

	Collection of texture atlases.

TextureBin maintains a collection of texture atlases, and creates new
ones as necessary to accommodate images added to the bin.

	
__init__(texture_width: int [https://docs.python.org/3/library/functions.html#int] = 2048, texture_height: int [https://docs.python.org/3/library/functions.html#int] = 2048) → None [https://docs.python.org/3/library/constants.html#None]

	Create a texture bin for holding atlases of the given size.

	Parameters:

	
	texture_widthint
	Width of texture atlases to create.

	texture_heightint
	Height of texture atlases to create.

	borderint
	Leaves specified pixels of blank space around
each image added to the Atlases.

	
add(

	img: AbstractImage,

	border: int [https://docs.python.org/3/library/functions.html#int] = 0,

) → TextureRegion

	Add an image into this texture bin.

This method calls TextureAtlas.add for the first atlas that has room
for the image.

AllocatorException is raised if the image exceeds the dimensions of
texture_width and texture_height.

	Parameters:

	
	img~pyglet.image.AbstractImage
	The image to add.

	borderint
	Leaves specified pixels of blank space around
each image added to the Atlas.

	Return type:

	TextureRegion

	Returns:

	The region of an atlas containing the newly added image.

pyglet.image.animation

2D Animations

Animations can be used by the Sprite class in place
of static images. They are essentially containers for individual image frames,
with a duration per frame. They can be infinitely looping, or stop at the last
frame. You can load Animations from disk, such as from GIF files:

ani = pyglet.resource.animation('walking.gif')
sprite = pyglet.sprite.Sprite(img=ani)

Alternatively, you can create your own Animations from a sequence of images
by using the from_image_sequence() method:

images = [pyglet.resource.image('walk_a.png'),
 pyglet.resource.image('walk_b.png'),
 pyglet.resource.image('walk_c.png')]

ani = pyglet.image.Animation.from_image_sequence(images, duration=0.1, loop=True)

You can also use an pyglet.image.ImageGrid, which is iterable:

sprite_sheet = pyglet.resource.image('my_sprite_sheet.png')
image_grid = pyglet.image.ImageGrid(sprite_sheet, rows=1, columns=5)

ani = pyglet.image.Animation.from_image_sequence(image_grid, duration=0.1)

In the above examples, all of the Animation Frames have the same duration.
If you wish to adjust this, you can manually create the Animation from a list of
AnimationFrame:

image_a = pyglet.resource.image('walk_a.png')
image_b = pyglet.resource.image('walk_b.png')
image_c = pyglet.resource.image('walk_c.png')

frame_a = pyglet.image.AnimationFrame(image_a, duration=0.1)
frame_b = pyglet.image.AnimationFrame(image_b, duration=0.2)
frame_c = pyglet.image.AnimationFrame(image_c, duration=0.1)

ani = pyglet.image.Animation(frames=[frame_a, frame_b, frame_c])

	
class Animation

	Sequence of images with timing information.

If no frames of the animation have a duration of None, the animation
loops continuously; otherwise the animation stops at the first frame with
duration of None.

	Ivariables:

	
	frameslist of ~pyglet.image.AnimationFrame
	The frames that make up the animation.

	
__init__(frames)

	Create an animation directly from a list of frames.

	Parameters:

	
	frameslist of ~pyglet.image.AnimationFrame
	The frames that make up the animation.

	
add_to_texture_bin(texture_bin, border=0)

	Add the images of the animation to a TextureBin.

The animation frames are modified in-place to refer to the texture bin
regions.

	Parameters:

	
	texture_bin~pyglet.image.atlas.TextureBin
	Texture bin to upload animation frames into.

	borderint
	Leaves specified pixels of blank space around
each image frame when adding to the TextureBin.

	
classmethod from_image_sequence(sequence, duration, loop=True)

	Create an animation from a list of images and a constant framerate.

	Parameters:

	
	sequencelist of ~pyglet.image.AbstractImage
	Images that make up the animation, in sequence.

	durationfloat
	Number of seconds to display each image.

	loopbool
	If True, the animation will loop continuously.

	Return type:

	Animation

	
get_duration()

	Get the total duration of the animation in seconds.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_max_height()

	Get the maximum image frame height.

This method is useful for determining texture space requirements: due
to the use of anchor_y the actual required playback area may be
larger.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_max_width()

	Get the maximum image frame width.

This method is useful for determining texture space requirements: due
to the use of anchor_x the actual required playback area may be
larger.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_transform(flip_x=False, flip_y=False, rotate=0)

	Create a copy of this animation applying a simple transformation.

The transformation is applied around the image’s anchor point of
each frame. The texture data is shared between the original animation
and the transformed animation.

	Parameters:

	
	flip_xbool
	If True, the returned animation will be flipped horizontally.

	flip_ybool
	If True, the returned animation will be flipped vertically.

	rotateint
	Degrees of clockwise rotation of the returned animation. Only
90-degree increments are supported.

	Return type:

	Animation

	
class AnimationFrame

	A single frame of an animation.

	
__init__(image, duration)

	Create an animation frame from an image.

	Parameters:

	
	image~pyglet.image.AbstractImage
	The image of this frame.

	durationfloat
	Number of seconds to display the frame, or None if it is
the last frame in the animation.

	
duration

	

	
image

	

pyglet.image.buffer

	
class Framebuffer

	OpenGL Framebuffer Object

New in version 2.0.

	
__init__(target=36160) → Framebuffer

	

	
attach_renderbuffer(renderbuffer, target=36160, attachment=36064)

	Attach a Renderbuffer to the Framebuffer

	Parameters:

	
	renderbufferpyglet.image.Renderbuffer
	Specifies the Renderbuffer to attach to the framebuffer attachment
point named by attachment.

	targetint
	Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent
to GL_DRAW_FRAMEBUFFER.

	attachmentint
	Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMENT.

	
attach_texture(texture, target=36160, attachment=36064)

	Attach a Texture to the Framebuffer

	Parameters:

	
	texturepyglet.image.Texture
	Specifies the texture object to attach to the framebuffer attachment
point named by attachment.

	targetint
	Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent
to GL_DRAW_FRAMEBUFFER.

	attachmentint
	Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMENT.

	
attach_texture_layer(

	texture,

	layer,

	level,

	target=36160,

	attachment=36064,

)

	Attach a Texture layer to the Framebuffer

	Parameters:

	
	texturepyglet.image.TextureArray
	Specifies the texture object to attach to the framebuffer attachment
point named by attachment.

	layerint
	Specifies the layer of texture to attach.

	levelint
	Specifies the mipmap level of texture to attach.

	targetint
	Specifies the framebuffer target. target must be GL_DRAW_FRAMEBUFFER,
GL_READ_FRAMEBUFFER, or GL_FRAMEBUFFER. GL_FRAMEBUFFER is equivalent
to GL_DRAW_FRAMEBUFFER.

	attachmentint
	Specifies the attachment point of the framebuffer. attachment must be
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT, GL_STENCIL_ATTACHMENT or
GL_DEPTH_STENCIL_ATTACHMENT.

	
bind()

	Bind the Framebuffer

This ctivates it as the current drawing target.

	
clear()

	Clear the attachments

	
delete()

	Explicitly delete the Framebuffer.

	
static get_status() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the current Framebuffer status, as a string.

If Framebuffer.is_complete is False, this method
can be used for more information. It will return a
string with the OpenGL reported status.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
unbind()

	Unbind the Framebuffer

Unbind should be called to prevent further rendering
to the framebuffer, or if you wish to access data
from its Texture atachments.

	
property height

	The height of the tallest attachment.

	
property id

	The Framebuffer id

	
property is_complete: bool [https://docs.python.org/3/library/functions.html#bool]

	True if the framebuffer is ‘complete’, else False.

	
property width

	The width of the widest attachment.

	
class Renderbuffer

	OpenGL Renderbuffer Object

	
__init__(width, height, internal_format, samples=1)

	

	
bind()

	

	
delete()

	

	
static unbind()

	

	
property height

	

	
property id

	

	
property width

	

	
get_max_color_attachments()

	Get the maximum allow Framebuffer Color attachements

pyglet.info

Get environment information useful for debugging.

Intended usage is to create a file for bug reports, e.g.:

python -m pyglet.info > info.txt

	
dump()

	Dump all information to stdout.

	
dump_al()

	Dump OpenAL info.

	
dump_ffmpeg()

	Dump FFmpeg info.

	
dump_gl(context=None)

	Dump GL info.

	
dump_glx()

	Dump GLX info.

	
dump_media()

	Dump pyglet.media info.

	
dump_platform()

	Dump OS specific

	
dump_pyglet()

	Dump pyglet version and options.

	
dump_python()

	Dump Python version and environment to stdout.

	
dump_window()

	Dump display, window, screen and default config info.

	
dump_wintab()

	Dump WinTab info.

pyglet.input

Joystick, Game Controller, Tablet and USB HID device support.

This module provides a unified interface to almost any input device, besides
the regular mouse and keyboard support provided by
Window. At the lowest
level, get_devices() can be used to retrieve a list of all supported
devices, including joysticks, tablets, game controllers, wheels, pedals, remote
controls, keyboards and mice. The set of returned devices varies greatly
depending on the operating system (and, of course, what’s plugged in).

At this level pyglet does not try to interpret what a particular device is,
merely what controls it provides. A Control can be either a button,
whose value is either True or False, or a relative or absolute-valued
axis, whose value is a float. Sometimes the name of a control can be provided
(for example, x, representing the horizontal axis of a joystick), but often
not. In these cases the device API may still be useful – the user will have
to be asked to press each button in turn or move each axis separately to
identify them.

Higher-level interfaces are provided for joysticks, game controllers, tablets
and the Apple remote control. These devices can usually be identified by pyglet
positively, and a base level of functionality for each one provided through a
common interface.

To use an input device:

	Call get_devices(), get_apple_remote(),
get_controllers() or get_joysticks() to retrieve and
identify the device.

	For low-level devices (retrieved by get_devices()), query the
devices list of controls and determine which ones you are interested in. For
high-level interfaces the set of controls is provided by the interface.

	Optionally attach event handlers to controls on the device. For high-level
interfaces, additional events are available.

	Call Device.open() to begin receiving events on the device. You can
begin querying the control values after this time; they will be updated
asynchronously.

	Call Device.close() when you are finished with the device (not
needed if your application quits at this time).

To use a tablet, follow the procedure above using get_tablets(), but
note that no control list is available; instead, calling Tablet.open()
returns a TabletCanvas onto which you should set your event
handlers.

For game controllers, the ControllerManager is available. This
provides a convenient way to handle hot-plugging of controllers.

New in version 1.2.

Classes

	
class ControllerManager

	High level interface for managing game Controllers.

This class provides a convenient way to handle the
connection and disconnection of devices. A list of all
connected Controllers can be queried at any time with the
get_controllers method. For hot-plugging, events are
dispatched for on_connect and on_disconnect.
To use the ControllerManager, first make an instance:

controller_man = pyglet.input.ControllerManager()

At the start of your game, query for any Controllers
that are already connected:

controllers = controller_man.get_controllers()

To handle Controllers that are connected or disconnected
after the start of your game, register handlers for the
appropriate events:

@controller_man.event
def on_connect(controller):
 # code to handle newly connected
 # (or re-connected) controllers
 controller.open()
 print("Connect:", controller)

@controller_man.event
def on_disconnect(controller):
 # code to handle disconnected Controller
 print("Disconnect:", controller)

New in version 2.0.

Methods

	
get_controllers() → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.input.base.Controller]

	Get a list of all connected Controllers

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Controller]

Events

	
on_connect(controller) → Controller

	A Controller has been connected. If this is
a previously dissconnected Controller that is
being re-connected, the same Controller instance
will be returned.

	Return type:

	Controller

	
on_disconnect(controller) → Controller

	A Controller has been disconnected.

	Return type:

	Controller

	
__init__()

	

	
__new__(**kwargs)

	

	
class Device

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Low level input device.

	
__init__(display: Display, name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a Device to receive input from.

	Parameters:

	
	display (Display) – The Display this device is connected to.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the device, as described by the device firmware.

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the device.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_controls() → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.input.base.Control]

	Get a list of controls provided by the device.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][Control]

	
get_guid() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the device GUID, in SDL2 format.

Return a str containing a unique device identification
string. This is generated from the hardware identifiers,
and is in the same format as was popularized by SDL2.
GUIDs differ between platforms, but are generally 32
hexidecimal characters.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
open(

	window: None [https://docs.python.org/3/library/constants.html#None] | Window = None,

	exclusive: bool [https://docs.python.org/3/library/functions.html#bool] = False,

) → None [https://docs.python.org/3/library/constants.html#None]

	Open the device to begin receiving input from it.

	Parameters:

	
	window (None [https://docs.python.org/3/library/constants.html#None] | Window) – Optional window to associate with the device. The behaviour
of this parameter is device and operating system dependant.
It can usually be omitted for most devices.

	exclusive (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the device will be opened exclusively so that no
other application can use it.

	Raises:

	DeviceOpenException – If the device cannot be opened in exclusive mode, usually
 due to being opened exclusively by another application.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property is_open: bool [https://docs.python.org/3/library/functions.html#bool]

	

	
manufacturer: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]

	The manufacturer name, if available

	
class Control

	Bases: EventDispatcher

Single value input provided by a device.

A control’s value can be queried when the device is open. Event handlers
can be attached to the control to be called when the value changes.

The min and max properties are provided as advertised by the
device; in some cases the control’s value will be outside this range.

Events

	
on_change(value) → float [https://docs.python.org/3/library/functions.html#float]

	The value changed.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

Attributes

	
value

	Current value of the control.

The range of the value is device-dependent; for absolute controls
the range is given by min and max (however the value may exceed
this range); for relative controls the range is undefined.

	
__init__(

	name: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str],

	raw_name: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = None,

	inverted: bool [https://docs.python.org/3/library/functions.html#bool] = False,

)

	Create a Control to receive input.

	Parameters:

	
	name (None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the control, or None if unknown.

	raw_name (None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional unmodified name of the control, as presented by the operating
system; or None if unknown.

	inverted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the value reported is actually inverted from what the
device reported; usually this is to provide consistency across
operating systems.

	
__new__(**kwargs)

	

	
class RelativeAxis

	Bases: Control

An axis whose value represents a relative change from the previous value.

This type of axis is used for controls that can scroll or move
continuously, such as a scrolling or pointing input. The value
is read as a delta change from the previous value.

	
RX: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rx'

	

	
RY: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ry'

	

	
RZ: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rz'

	

	
WHEEL: str [https://docs.python.org/3/library/stdtypes.html#str] = 'wheel'

	

	
X: str [https://docs.python.org/3/library/stdtypes.html#str] = 'x'

	

	
Y: str [https://docs.python.org/3/library/stdtypes.html#str] = 'y'

	

	
Z: str [https://docs.python.org/3/library/stdtypes.html#str] = 'z'

	

	
property value: float [https://docs.python.org/3/library/functions.html#float]

	Current value of the control.

The range of the value is device-dependent; for absolute controls
the range is given by min and max (however the value may exceed
this range); for relative controls the range is undefined.

	
class AbsoluteAxis

	Bases: Control

An axis whose value represents the current measurement from the device.

This type of axis is used for controls that have minimum and maximum
positions. The value is a range between the min and max.

	
__init__(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	minimum: float [https://docs.python.org/3/library/functions.html#float],

	maximum: float [https://docs.python.org/3/library/functions.html#float],

	raw_name: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = None,

	inverted: bool [https://docs.python.org/3/library/functions.html#bool] = False,

)

	Create a Control to receive input.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the control, or None if unknown.

	raw_name (None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional unmodified name of the control, as presented by the operating
system; or None if unknown.

	inverted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the value reported is actually inverted from what the
device reported; usually this is to provide consistency across
operating systems.

	
HAT: str [https://docs.python.org/3/library/stdtypes.html#str] = 'hat'

	

	
HAT_X: str [https://docs.python.org/3/library/stdtypes.html#str] = 'hat_x'

	

	
HAT_Y: str [https://docs.python.org/3/library/stdtypes.html#str] = 'hat_y'

	

	
RX: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rx'

	

	
RY: str [https://docs.python.org/3/library/stdtypes.html#str] = 'ry'

	

	
RZ: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rz'

	

	
X: str [https://docs.python.org/3/library/stdtypes.html#str] = 'x'

	

	
Y: str [https://docs.python.org/3/library/stdtypes.html#str] = 'y'

	

	
Z: str [https://docs.python.org/3/library/stdtypes.html#str] = 'z'

	

	
class Button

	Bases: Control

A control whose value is boolean.

Events

	
on_press()

	The button was pressed.

	
on_release()

	The button was released.

Attributes

	
value

	

	
__init__(

	name: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str],

	raw_name: None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str] = None,

	inverted: bool [https://docs.python.org/3/library/functions.html#bool] = False,

)

	Create a Control to receive input.

	Parameters:

	
	name (None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the control, or None if unknown.

	raw_name (None [https://docs.python.org/3/library/constants.html#None] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional unmodified name of the control, as presented by the operating
system; or None if unknown.

	inverted (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the value reported is actually inverted from what the
device reported; usually this is to provide consistency across
operating systems.

	
__new__(**kwargs)

	

	
class Controller

	Bases: EventDispatcher

High-level interface for Game Controllers.

Unlike Joysticks, Controllers have a strictly defined set of inputs
that matches the layout of popular home video game console Controllers.
This includes a variety of face and shoulder buttons, analog sticks and
triggers, a directional pad, and optional rumble (force feedback) effects.

To use a Controller, you must first call open. Controllers will then
dispatch various events whenever the inputs change. They can also be polled
manually at any time to find the current value of any inputs. Analog stick
inputs are normalized to the range [-1.0, 1.0], and triggers are normalized
to the range [0.0, 1.0]. All other inputs are digital.

Note: A running application event loop is required

	The following event types are dispatched:
	on_button_press
on_button_release
on_stick_motion
on_dpad_motion
on_trigger_motion

Methods

	
open(

	window: None [https://docs.python.org/3/library/constants.html#None] | Window = None,

	exclusive: bool [https://docs.python.org/3/library/functions.html#bool] = False,

) → None [https://docs.python.org/3/library/constants.html#None]

	Open the controller. See Device.open.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the controller. See Device.close.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Events

	
on_stick_motion(

	controller: Controller,

	stick: str [https://docs.python.org/3/library/stdtypes.html#str],

	vector: Vec2,

)

	The value of a controller analogue stick changed.

	Parameters:

	
	controller (Controller) – The controller whose analogue stick changed.

	stick (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the stick that changed.

	vector (Vec2) – A 2D vector representing the stick position.
Each individual axis will be normalized from [-1, 1],

	
on_dpad_motion(

	controller: Controller,

	vector: Vec2,

)

	The direction pad of the controller changed.

	Parameters:

	
	controller (Controller) – The controller whose hat control changed.

	vector (Vec2) – A 2D vector, representing the dpad position.
Each individual axis will be one of [-1, 0, 1].

	
on_trigger_motion(

	controller: Controller,

	trigger: str [https://docs.python.org/3/library/stdtypes.html#str],

	value: float [https://docs.python.org/3/library/functions.html#float],

)

	The value of a controller analogue stick changed.

	Parameters:

	
	controller (Controller) – The controller whose analogue stick changed.

	trigger (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the trigger that changed.

	value (float [https://docs.python.org/3/library/functions.html#float]) – The current value of the trigger, normalized to [0, 1].

	
on_button_press(controller: Controller, button: str [https://docs.python.org/3/library/stdtypes.html#str])

	A button on the controller was pressed.

	Parameters:

	
	controller (Controller) – The controller whose button was pressed.

	button (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the button that was pressed.

	
on_button_release(controller: Controller, button: str [https://docs.python.org/3/library/stdtypes.html#str])

	A button on the joystick was released.

	Parameters:

	
	controller (Controller) – The controller whose button was released.

	button (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the button that was released.

	
type

	The type, or family, of the Controller

This property uses a simple heuristic query to attempt
to determine which general family the controller falls
into. For example, the controller may have Ⓐ,Ⓑ,Ⓧ,Ⓨ,
or ✕,○,□,△ labels on the face buttons. Using this
information, you can choose to display matching button
prompt images in your game. For example:

if controller.type == 'PS':
 a_glyph = 'ps_cross_button.png'
 b_glyph = 'ps_circle_button.png'
 ...
elif controller.type == 'XB':
 a_glyph = 'ms_a_button.png'
 b_glyph = 'ms_b_button.png'
 ...
else:
 ...

	Returns:

	A string, currently one of “PS”, “XB”, or “GENERIC”.

	
__init__(device: Device, mapping: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Create a Controller instace mapped to a Device.

New in version 2.0.

	
__new__(**kwargs)

	

	
class Joystick

	Bases: EventDispatcher

High-level interface for joystick-like devices. This includes a wide
range of analog and digital joysticks, gamepads, controllers, and possibly
even steering wheels and other input devices. There is unfortunately no
easy way to distinguish between most of these different device types.

For a simplified subset of Joysticks, see the Controller
interface. This covers a variety of popular game console controllers. Unlike
Joysticks, Controllers have strictly defined layouts and inputs.

To use a joystick, first call open, then in your game loop examine
the values of x, y, and so on. These values are normalized to the
range [-1.0, 1.0].

To receive events when the value of an axis changes, attach an
on_joyaxis_motion event handler to the joystick. The Joystick
instance, axis name, and current value are passed as parameters to this event.

To handle button events, you should attach on_joybutton_press and on_joy_button_release
event handlers to the joystick. Both the Joystick instance
and the index of the changed button are passed as parameters to these events.

Alternately, you may attach event handlers to each individual button in
button_controls to receive on_press or on_release events.

To use the hat switch, attach an on_joyhat_motion event handler to the joystick.
The handler will be called with both the hat_x and hat_y values whenever the value
of the hat switch changes.

The device name can be queried to get the name of the joystick.

Methods

	
open(window: None [https://docs.python.org/3/library/constants.html#None] | Window, exclusive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Open the joystick device. See Device.open.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
close() → None [https://docs.python.org/3/library/constants.html#None]

	Close the joystick device. See Device.close.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Events

	
on_joyaxis_motion(

	joystick: Joystick,

	axis: str [https://docs.python.org/3/library/stdtypes.html#str],

	value: float [https://docs.python.org/3/library/functions.html#float],

)

	The value of a joystick axis changed.

	Parameters:

	
	joystick (Joystick) – The joystick device whose axis changed.

	axis (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the axis that changed.

	value (float [https://docs.python.org/3/library/functions.html#float]) – The current value of the axis, normalized to [-1, 1].

	
on_joyhat_motion(

	joystick: Joystick,

	hat_x: float [https://docs.python.org/3/library/functions.html#float],

	hat_y: float [https://docs.python.org/3/library/functions.html#float],

)

	The value of the joystick hat switch changed.

	Parameters:

	
	joystick (Joystick) – The joystick device whose hat control changed.

	hat_x (float [https://docs.python.org/3/library/functions.html#float]) – Current hat (POV) horizontal position; one of -1.0 (left), 0.0
(centered) or 1.0 (right).

	hat_y (float [https://docs.python.org/3/library/functions.html#float]) – Current hat (POV) vertical position; one of -1.0 (bottom), 0.0
(centered) or 1.0 (top).

	
on_joybutton_press(joystick: Joystick, button: int [https://docs.python.org/3/library/functions.html#int])

	A button on the joystick was pressed.

	Parameters:

	
	joystick (Joystick) – The joystick device whose button was pressed.

	button (int [https://docs.python.org/3/library/functions.html#int]) – The index (in button_controls) of the button that was pressed.

	
on_joybutton_release(joystick: Joystick, button: int [https://docs.python.org/3/library/functions.html#int])

	A button on the joystick was released.

	Parameters:

	
	joystick (Joystick) – The joystick device whose button was released.

	button (int [https://docs.python.org/3/library/functions.html#int]) – The index (in button_controls) of the button that was released.

	
__init__(device)

	

	
__new__(**kwargs)

	

	
class AppleRemote

	Bases: EventDispatcher

High-level interface for Apple remote control.

This interface provides access to the 6 button controls on the remote.
Pressing and holding certain buttons on the remote is interpreted as
a separate control.

Methods

	
open(window: Window, exclusive: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Open the device. See Device.open.

	
close()

	Close the device. See Device.close.

Events

	
on_button_press(button: str [https://docs.python.org/3/library/stdtypes.html#str])

	A button on the remote was pressed.

Only the ‘up’ and ‘down’ buttons will generate an event when the
button is first pressed. All other buttons on the remote will wait
until the button is released and then send both the press and release
events at the same time.

	Parameters:

	button (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the button that was pressed. The valid names are
‘up’, ‘down’, ‘left’, ‘right’, ‘left_hold’, ‘right_hold’,
‘menu’, ‘menu_hold’, ‘select’, and ‘select_hold’

	
on_button_release(button: str [https://docs.python.org/3/library/stdtypes.html#str])

	A button on the remote was released.

The ‘select_hold’ and ‘menu_hold’ button release events are sent
immediately after the corresponding press events regardless of
whether the user has released the button.

	Parameters:

	button (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the button that was released. The valid names are
‘up’, ‘down’, ‘left’, ‘right’, ‘left_hold’, ‘right_hold’,
‘menu’, ‘menu_hold’, ‘select’, and ‘select_hold’

	
__init__(device)

	

	
__new__(**kwargs)

	

	
class Tablet

	High-level interface to tablet devices.

Unlike other devices, tablets must be opened for a specific window,
and cannot be opened exclusively. The open method returns a
TabletCanvas object, which supports the events provided by the tablet.

Currently only one tablet device can be used, though it can be opened on
multiple windows. If more than one tablet is connected, the behaviour is
undefined.

	
__init__()

	

	
__new__(**kwargs)

	

Functions

	
get_apple_remote(display: None [https://docs.python.org/3/library/constants.html#None] | Display = None) → AppleRemote | None [https://docs.python.org/3/library/constants.html#None]

	Get the Apple remote control device, if it exists.

The Apple remote is the small white 6-button remote control that
accompanies most recent Apple desktops and laptops. The remote can only
be used with Mac OS X.

	Parameters:

	display (None | Display) – Currently ignored.

	Return type:

	AppleRemote | None

	
get_devices(display: None [https://docs.python.org/3/library/constants.html#None] | Display = None) → list [https://docs.python.org/3/library/stdtypes.html#list][Device]

	Get a list of all attached input devices.

	Parameters:

	display (None | Display) – The display device to query for input devices. Ignored on Mac
OS X and Windows. On Linux, defaults to the default display device.

	Return type:

	list[Device]

	
get_controllers(display: None [https://docs.python.org/3/library/constants.html#None] | Display = None) → list [https://docs.python.org/3/library/stdtypes.html#list][Controller]

	Get a list of attached controllers.

	Parameters:

	display (None | Display) – The display device to query for input devices. Ignored on Mac
OS X and Windows. On Linux, defaults to the default display device.

	Return type:

	list[Controller]

	
get_joysticks(display: None [https://docs.python.org/3/library/constants.html#None] | Display = None) → list [https://docs.python.org/3/library/stdtypes.html#list][Joystick]

	Get a list of attached joysticks.

	Parameters:

	display (None | Display) – The display device to query for input devices. Ignored on Mac
OS X and Windows. On Linux, defaults to the default display device.

	Return type:

	list[Joystick]

	
get_tablets(display: None [https://docs.python.org/3/library/constants.html#None] | Display = None) → list [https://docs.python.org/3/library/stdtypes.html#list][Tablet]

	Get a list of tablets.

This function may return a valid tablet device even if one is not
attached (for example, it is not possible on Mac OS X to determine if
a tablet device is connected). Despite returning a list of tablets,
pyglet does not currently support multiple tablets, and the behaviour
is undefined if more than one is attached.

	Parameters:

	display (None | Display) – The display device to query for input devices. Ignored on Mac
OS X and Windows. On Linux, defaults to the default display device.

	Return type:

	list[Tablet]

Exceptions

	
class DeviceException

	

	
class DeviceOpenException

	

	
class DeviceExclusiveException

	

pyglet.math

Matrix and Vector math.

This module provides Vector and Matrix objects, including Vec2, Vec3,
Vec4, Mat3, and Mat4. Most common matrix and vector operations are
supported. Helper methods are included for rotating, scaling, and
transforming. The Mat4 includes class methods
for creating orthographic and perspective projection matrixes.

Matrices behave just like they do in GLSL: they are specified in column-major
order and multiply on the left of vectors, which are treated as columns.

All objects are immutable and hashable.

	
class Mat3

	A 3x3 Matrix

Mat3 is an immutable 3x3 Matrix, wich includes most common operators.

A Matrix can be created with a list or tuple of 12 values.
If no values are provided, an “identity matrix” will be created
(1.0 on the main diagonal). Because Mat3 objects are immutable,
all operations return a new Mat3 object.

Note

Matrix multiplication is performed using the “@” operator.

	
static __new__(

	cls: type [https://docs.python.org/3/library/functions.html#type][Mat3T],

	values: Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][float [https://docs.python.org/3/library/functions.html#float]] = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0),

) → Mat3T

	
	Return type:

	TypeVar (Mat3T, bound = Mat3)

	
rotate(phi: float [https://docs.python.org/3/library/functions.html#float]) → Mat3

	
	Return type:

	Mat3

	
scale(sx: float [https://docs.python.org/3/library/functions.html#float], sy: float [https://docs.python.org/3/library/functions.html#float]) → Mat3

	
	Return type:

	Mat3

	
shear(sx: float [https://docs.python.org/3/library/functions.html#float], sy: float [https://docs.python.org/3/library/functions.html#float]) → Mat3

	
	Return type:

	Mat3

	
translate(tx: float [https://docs.python.org/3/library/functions.html#float], ty: float [https://docs.python.org/3/library/functions.html#float]) → Mat3

	
	Return type:

	Mat3

	
class Mat4

	A 4x4 Matrix

Mat4 is an immutable 4x4 Matrix, which includs most common operators.
This includes class methods for creating orthogonal and perspective
projection matrixes, which can be used directly by OpenGL.

A Matrix can be created with a list or tuple of 16 values. If no values
are provided, an “identity matrix” will be created (1.0 on the main diagonal).
Mat4 objects are immutable, so all operations return a new Mat4 object.

Note

Matrix multiplication is performed using the “@” operator.

	
static __new__(

	cls: type [https://docs.python.org/3/library/functions.html#type][Mat4T],

	values: Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable][float [https://docs.python.org/3/library/functions.html#float]] = (1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0),

) → Mat4T

	
	Return type:

	TypeVar (Mat4T, bound = Mat4)

	
column(index: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Get a specific column as a tuple.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
classmethod from_rotation(angle: float [https://docs.python.org/3/library/functions.html#float], vector: Vec3) → Mat4

	Create a rotation matrix from an angle and Vec3.

	Parameters:

	
	angle (float [https://docs.python.org/3/library/functions.html#float]) – The desired angle, in radians.

	vector (Vec3) – A Vec3 indicating the direction.

	Return type:

	Mat4

	
classmethod from_scale(vector: Vec3) → Mat4T

	Create a scale matrix from a Vec3.

	Return type:

	TypeVar (Mat4T, bound = Mat4)

	
classmethod from_translation(vector: Vec3) → Mat4T

	Create a translation matrix from a Vec3.

	Return type:

	TypeVar (Mat4T, bound = Mat4)

	
classmethod look_at(

	position: Vec3,

	target: Vec3,

	up: Vec3,

)

	Create a viewing matrix that points toward a target.

This method takes three Vec3s, describing the viewer’s position,
where they are looking, and the upward axis (typically positive
on the Y axis). The resulting Mat4 can be used as the projection
matrix.

	Parameters:

	
	position (Vec3) – The location of the viewer in the scene.

	target (Vec3) – The point that the viewer is looking towards.

	up (Vec3) – A vector pointing “up” in the scene, typically Vec3(0.0, 1.0, 0.0).

	
classmethod orthogonal_projection(

	left: float [https://docs.python.org/3/library/functions.html#float],

	right: float [https://docs.python.org/3/library/functions.html#float],

	bottom: float [https://docs.python.org/3/library/functions.html#float],

	top: float [https://docs.python.org/3/library/functions.html#float],

	z_near: float [https://docs.python.org/3/library/functions.html#float],

	z_far: float [https://docs.python.org/3/library/functions.html#float],

) → Mat4T

	Create a Mat4 orthographic projection matrix for use with OpenGL.

Given left, right, bottom, top values, and near/far z planes,
create a 4x4 Projection Matrix. This is useful for setting
projection.

	Return type:

	TypeVar (Mat4T, bound = Mat4)

	
classmethod perspective_projection(

	aspect: float [https://docs.python.org/3/library/functions.html#float],

	z_near: float [https://docs.python.org/3/library/functions.html#float],

	z_far: float [https://docs.python.org/3/library/functions.html#float],

	fov: float [https://docs.python.org/3/library/functions.html#float] = 60,

) → Mat4T

	Create a Mat4 perspective projection matrix for use with OpenGL.

Given a desired aspect ratio, near/far planes, and fov (field of view),
create a 4x4 Projection Matrix. This is useful for setting
projection.

	Return type:

	TypeVar (Mat4T, bound = Mat4)

	
rotate(angle: float [https://docs.python.org/3/library/functions.html#float], vector: Vec3) → Mat4

	Get a rotation Matrix on x, y, or z axis.

	Return type:

	Mat4

	
row(index: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Get a specific row as a tuple.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
scale(vector: Vec3) → Mat4

	Get a scale Matrix on x, y, or z axis.

	Return type:

	Mat4

	
translate(vector: Vec3) → Mat4

	Get a translation Matrix along x, y, and z axis.

	Return type:

	Mat4

	
transpose() → Mat4

	Get a transpose of this Matrix.

	Return type:

	Mat4

	
class Quaternion

	Quaternion

	
conjugate() → Quaternion

	
	Return type:

	Quaternion

	
dot(other: Quaternion) → float [https://docs.python.org/3/library/functions.html#float]

	
	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
classmethod from_mat3() → Quaternion

	
	Return type:

	Quaternion

	
classmethod from_mat4() → Quaternion

	
	Return type:

	Quaternion

	
normalize() → Quaternion

	
	Return type:

	Quaternion

	
to_mat3() → Mat3

	
	Return type:

	Mat3

	
to_mat4() → Mat4

	
	Return type:

	Mat4

	
property mag: float [https://docs.python.org/3/library/functions.html#float]

	The magnitude, or length, of the Quaternion.

The distance between the coordinates and the origin.
Alias of abs(quaternion_instance).

	
w: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 0

	
x: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
y: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 2

	
z: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 3

	
class Vec2

	A two-dimensional vector represented as an X Y coordinate pair.

Vec2 is an immutable 2D Vector, including most common
operators. As an immutable type, all operations return a new object.

Note

The Python len operator returns the number of elements in
the vector. For the vector length, use the abs operator.

	
clamp(min_val: float [https://docs.python.org/3/library/functions.html#float], max_val: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Restrict the value of the X and Y components of the vector to be within the given values.

	Return type:

	Vec2

	
distance(other: Vec2) → float [https://docs.python.org/3/library/functions.html#float]

	Calculate the distance between this vector and another 2D vector.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
dot(other: Vec2) → float [https://docs.python.org/3/library/functions.html#float]

	Calculate the dot product of this vector and another 2D vector.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
from_heading(heading: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Create a new vector of the same magnitude with the given heading.

In effect, the vector rotated to the new heading.

	Parameters:

	heading (float [https://docs.python.org/3/library/functions.html#float]) – The desired heading, in radians.

	Return type:

	Vec2

	
from_magnitude(magnitude: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Create a new vector of the given magnitude

The new vector will be created by first normalizing,
then scaling the vector. The heading remains unchanged.

	Return type:

	Vec2

	
static from_polar(mag: float [https://docs.python.org/3/library/functions.html#float], angle: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Create a new vector from the given polar coordinates.

	Parameters:

	
	mag (float [https://docs.python.org/3/library/functions.html#float]) – The desired magnitude.

	angle (float [https://docs.python.org/3/library/functions.html#float]) – The angle, in radians.

	Return type:

	Vec2

	
index(*args)

	Return first index of value.

Raises ValueError if the value is not present.

	
lerp(other: Vec2, alpha: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Create a new Vec2 linearly interpolated between this vector and another Vec2.

	Parameters:

	
	other (Vec2) – Another Vec2 instance.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The amount of interpolation between this vector, and the other
vector. This should be a value between 0.0 and 1.0. For example:
0.5 is the midway point between both vectors.

	Return type:

	Vec2

	
limit(maximum: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Limit the magnitude of the vector to passed maximum value.

	Return type:

	Vec2

	
normalize() → Vec2

	Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.

	Return type:

	Vec2

	
reflect(vector: Vec2) → Vec2

	Create a new Vec2 reflected (ricochet) from the given normalized vector.

	Parameters:

	vector (Vec2) – A normalized vector.

	Return type:

	Vec2

	
rotate(angle: float [https://docs.python.org/3/library/functions.html#float]) → Vec2

	Create a new vector rotated by the angle. The magnitude remains unchanged.

	Parameters:

	angle (float [https://docs.python.org/3/library/functions.html#float]) – The desired angle, in radians.

	Return type:

	Vec2

	
property heading: float [https://docs.python.org/3/library/functions.html#float]

	The angle of the vector in radians.

	
property mag: float [https://docs.python.org/3/library/functions.html#float]

	The magnitude, or length of the vector.

The distance between the coordinates and the origin.
Alias of abs(vec2_instance).

	
x: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 0

	
y: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
class Vec3

	A three-dimensional vector represented as X Y Z coordinates.

Vec3 is an immutable 2D Vector, including most common operators.
As an immutable type, all operations return a new object.

Note

The Python len operator returns the number of elements in
the vector. For the vector length, use the abs operator.

	
clamp(min_val: float [https://docs.python.org/3/library/functions.html#float], max_val: float [https://docs.python.org/3/library/functions.html#float]) → Vec3

	Restrict the value of the X, Y and Z components of the vector to be within the given values.

	Return type:

	Vec3

	
cross(other: Vec3) → Vec3

	Calculate the cross product of this vector and another 3D vector.

	Return type:

	Vec3

	
distance(other: Vec3) → float [https://docs.python.org/3/library/functions.html#float]

	Get the distance between this vector and another 3D vector.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
dot(other: Vec3) → float [https://docs.python.org/3/library/functions.html#float]

	Calculate the dot product of this vector and another 3D vector.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
from_magnitude(magnitude: float [https://docs.python.org/3/library/functions.html#float]) → Vec3

	Create a new vector of the given magnitude

The new vector will be created by first normalizing,
then scaling the vector. The heading remains unchanged.

	Return type:

	Vec3

	
index(*args)

	Return first index of value.

Raises ValueError if the value is not present.

	
lerp(other: Vec3, alpha: float [https://docs.python.org/3/library/functions.html#float]) → Vec3

	Create a new Vec3 linearly interpolated between this vector and another Vec3.

	Parameters:

	
	other (Vec3) – Another Vec3 instance.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The amount of interpolation between this vector, and the other
vector. This should be a value between 0.0 and 1.0. For example:
0.5 is the midway point between both vectors.

	Return type:

	Vec3

	
limit(maximum: float [https://docs.python.org/3/library/functions.html#float]) → Vec3

	Limit the magnitude of the vector to passed maximum value.

	Return type:

	Vec3

	
normalize() → Vec3

	Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.

	Return type:

	Vec3

	
property mag: float [https://docs.python.org/3/library/functions.html#float]

	The magnitude, or length of the vector.

The distance between the coordinates and the origin.
Alias of abs(vector_instance).

	
x: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 0

	
y: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
z: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 2

	
class Vec4

	A four-dimensional vector represented as X Y Z W coordinates.

Vec4 is an immutable 2D Vector, including most common operators.
As an immutable type, all operations return a new object.

Note

The Python len operator returns the number of elements in
the vector. For the vector length, use the abs operator.

	
clamp(min_val: float [https://docs.python.org/3/library/functions.html#float], max_val: float [https://docs.python.org/3/library/functions.html#float]) → Vec4

	
	Return type:

	Vec4

	
distance(other: Vec4) → float [https://docs.python.org/3/library/functions.html#float]

	
	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
dot(other: Vec4) → float [https://docs.python.org/3/library/functions.html#float]

	
	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
index(*args)

	Return first index of value.

Raises ValueError if the value is not present.

	
lerp(other: Vec4, alpha: float [https://docs.python.org/3/library/functions.html#float]) → Vec4

	Create a new Vec4 linearly interpolated between this vector and another Vec4.

	Parameters:

	
	other (Vec4) – Another Vec4 instance.

	alpha (float [https://docs.python.org/3/library/functions.html#float]) – The amount of interpolation between this vector, and the other
vector. This should be a value between 0.0 and 1.0. For example:
0.5 is the midway point between both vectors.

	Return type:

	Vec4

	
normalize() → Vec4

	Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.

	Return type:

	Vec4

	
w: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 3

	
x: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 0

	
y: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 1

	
z: float [https://docs.python.org/3/library/functions.html#float]

	Alias for field number 2

	
clamp(num: float [https://docs.python.org/3/library/functions.html#float], minimum: float [https://docs.python.org/3/library/functions.html#float], maximum: float [https://docs.python.org/3/library/functions.html#float]) → float [https://docs.python.org/3/library/functions.html#float]

	Clamp a value between a minimum and maximum limit.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

pyglet.media

Submodules

	pyglet.media.synthesis

Details

Audio and video playback.

pyglet can play WAV files, and if FFmpeg is installed, many other audio and
video formats.

Playback is handled by the Player class, which reads raw data from
Source objects and provides methods for pausing, seeking, adjusting
the volume, and so on. The Player class implements the best
available audio device.

player = Player()

A Source is used to decode arbitrary audio and video files. It is
associated with a single player by “queueing” it:

source = load('background_music.mp3')
player.queue(source)

Use the Player to control playback.

If the source contains video, the Source.video_format() attribute
will be non-None, and the Player.texture attribute will contain the
current video image synchronised to the audio.

Decoding sounds can be processor-intensive and may introduce latency,
particularly for short sounds that must be played quickly, such as bullets or
explosions. You can force such sounds to be decoded and retained in memory
rather than streamed from disk by wrapping the source in a
StaticSource:

bullet_sound = StaticSource(load('bullet.wav'))

The other advantage of a StaticSource is that it can be queued on
any number of players, and so played many times simultaneously.

Pyglet relies on Python’s garbage collector to release resources when a player
has finished playing a source. In this way some operations that could affect
the application performance can be delayed.

The player provides a Player.delete() method that can be used to
release resources immediately.

Classes

	
class Player

	High-level sound and video player.

Methods

	
play() → None [https://docs.python.org/3/library/constants.html#None]

	Begin playing the current source.

This has no effect if the player is already playing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
pause() → None [https://docs.python.org/3/library/constants.html#None]

	Pause playback of the current source.

This has no effect if the player is already paused.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
queue(

	source: Source | Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Source],

) → None [https://docs.python.org/3/library/constants.html#None]

	Queue the source on this player.

If the player has no source, the player will start to play immediately
or pause depending on its playing attribute.

	Parameters:

	source (Source or Iterable[Source]) – The source to queue.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
seek(timestamp: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Seek for playback to the indicated timestamp on the current source.

Timestamp is expressed in seconds. If the timestamp is outside the
duration of the source, it will be clamped to the end.

	Parameters:

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – The time where to seek in the source.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
seek_next_frame() → None [https://docs.python.org/3/library/constants.html#None]

	Step forwards one video frame in the current source.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_texture() → Texture

	Get the texture for the current video frame.

You should call this method every time you display a frame of video,
as multiple textures might be used. The return value will be None if
there is no video in the current source.

	Return type:

	Texture

	Returns:

	pyglet.image.Texture

Deprecated since version 1.4: Use texture instead

	
next_source() → None [https://docs.python.org/3/library/constants.html#None]

	Move immediately to the next source in the current playlist.

If the playlist is empty, discard it and check if another playlist
is queued. There may be a gap in playback while the audio buffer
is refilled.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Release the resources acquired by this player.

The internal audio player and the texture will be deleted.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update_texture(dt: float [https://docs.python.org/3/library/functions.html#float] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Manually update the texture from the current source.

This happens automatically, so you shouldn’t need to call this method.

	Parameters:

	dt (float [https://docs.python.org/3/library/functions.html#float]) – The time elapsed since the last call to
update_texture.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Events

	
on_eos()

	The current source ran out of data.

The default behaviour is to advance to the next source in the
playlist if the loop attribute is set to False.
If loop attribute is set to True, the current source
will start to play again until next_source() is called or
loop is set to False.

	Event:

	

	
on_player_eos()

	The player ran out of sources. The playlist is empty.

	Event:

	

	
on_player_next_source()

	The player starts to play the next queued source in the playlist.

This is a useful event for adjusting the window size to the new
source VideoFormat for example.

	Event:

	

Attributes

	
cone_inner_angle

	The interior angle of the inner cone.

The angle is given in degrees, and defaults to 360. When the listener
is positioned within the volume defined by the inner cone, the sound is
played at normal gain (see volume).

	
cone_outer_angle

	The interior angle of the outer cone.

The angle is given in degrees, and defaults to 360. When the listener
is positioned within the volume defined by the outer cone, but outside
the volume defined by the inner cone, the gain applied is a smooth
interpolation between volume and cone_outer_gain.

	
cone_orientation

	The direction of the sound in 3D space.

The direction is specified as a tuple of floats (x, y, z), and has no
unit. The default direction is (0, 0, -1). Directional effects are only
noticeable if the other cone properties are changed from their default
values.

	
cone_outer_gain

	The gain applied outside the cone.

When the listener is positioned outside the volume defined by the outer
cone, this gain is applied instead of volume.

	
min_distance

	The distance beyond which the sound volume drops by half, and within
which no attenuation is applied.

The minimum distance controls how quickly a sound is attenuated as it
moves away from the listener. The gain is clamped at the nominal value
within the min distance. By default the value is 1.0.

The unit defaults to meters, but can be modified with the listener
properties.

	
max_distance

	The distance at which no further attenuation is applied.

When the distance from the listener to the player is greater than this
value, attenuation is calculated as if the distance were value. By
default the maximum distance is infinity.

The unit defaults to meters, but can be modified with the listener
properties.

	
pitch

	The pitch shift to apply to the sound.

The nominal pitch is 1.0. A pitch of 2.0 will sound one octave higher,
and play twice as fast. A pitch of 0.5 will sound one octave lower, and
play twice as slow. A pitch of 0.0 is not permitted.

	
playing

	Read-only. Determine if the player state is playing.

The playing property is irrespective of whether or not there is
actually a source to play. If playing is True and a source is
queued, it will begin to play immediately. If playing is False,
it is implied that the player is paused. There is no other possible
state.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
position

	The position of the sound in 3D space.

The position is given as a tuple of floats (x, y, z). The unit
defaults to meters, but can be modified with the listener properties.

	
source

	Read-only. The current Source, or None.

	Type:

	Source

	
texture

	Get the texture for the current video frame.

You should call this method every time you display a frame of video,
as multiple textures might be used. The return value will be None if
there is no video in the current source.

	Type:

	pyglet.image.Texture

	
time

	Read-only. Current playback time of the current source.

The playback time is a float expressed in seconds, with 0.0 being the
beginning of the media. The playback time returned represents the
player master clock time which is used to synchronize both the audio
and the video.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
volume

	The volume level of sound playback.

The nominal level is 1.0, and 0.0 is silence.

The volume level is affected by the distance from the listener (if
positioned).

	
__init__() → None [https://docs.python.org/3/library/constants.html#None]

	Initialize the Player with a MasterClock.

	
__new__(**kwargs)

	

	
loop

	Loop the current source indefinitely or until
next_source() is called. Defaults to False.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

New in version 1.4.

	
class PlayerGroup

	Group of players that can be played and paused simultaneously.

Create a player group for the given list of players.

All players in the group must currently not belong to any other group.

	Parameters:

	players (Iterable[Player]) – Iterable of Player s in this
group.

	
play() → None [https://docs.python.org/3/library/constants.html#None]

	Begin playing all players in the group simultaneously.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
pause() → None [https://docs.python.org/3/library/constants.html#None]

	Pause all players in the group simultaneously.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
__init__(players: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Player]) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize the PlayerGroup with the players.

	
__new__(**kwargs)

	

	
class AudioFormat

	Audio details.

An instance of this class is provided by sources with audio tracks. You
should not modify the fields, as they are used internally to describe the
format of data provided by the source.

	Parameters:

	
	channels (int [https://docs.python.org/3/library/functions.html#int]) – The number of channels: 1 for mono or 2 for stereo
(pyglet does not yet support surround-sound sources).

	sample_size (int [https://docs.python.org/3/library/functions.html#int]) – Bits per sample; only 8 or 16 are supported.

	sample_rate (int [https://docs.python.org/3/library/functions.html#int]) – Samples per second (in Hertz).

	
__init__(channels: int [https://docs.python.org/3/library/functions.html#int], sample_size: int [https://docs.python.org/3/library/functions.html#int], sample_rate: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
class VideoFormat

	Video details.

An instance of this class is provided by sources with a video stream. You
should not modify the fields.

Note that the sample aspect has no relation to the aspect ratio of the
video image. For example, a video image of 640x480 with sample aspect 2.0
should be displayed at 1280x480. It is the responsibility of the
application to perform this scaling.

	Parameters:

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – Width of video image, in pixels.

	height (int [https://docs.python.org/3/library/functions.html#int]) – Height of video image, in pixels.

	sample_aspect (float [https://docs.python.org/3/library/functions.html#float]) – Aspect ratio (width over height) of a single
video pixel.

	frame_rate (float [https://docs.python.org/3/library/functions.html#float]) – Frame rate (frames per second) of the video.

New in version 1.2.

	
__init__(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int], sample_aspect: float [https://docs.python.org/3/library/functions.html#float] = 1.0) → None [https://docs.python.org/3/library/constants.html#None]

	

	
__new__(**kwargs)

	

	
class AudioData

	A single packet of audio data.

This class is used internally by pyglet.

	Parameters:

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], ctypes array, or supporting buffer protocol) – Sample data.

	length (int [https://docs.python.org/3/library/functions.html#int]) – Size of sample data, in bytes.

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – Time of the first sample, in seconds.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Total data duration, in seconds.

	events (List[pyglet.media.drivers.base.MediaEvent]) – List of events
contained within this packet. Events are timestamped relative to
this audio packet.

Deprecated since version 2.0.10: timestamp and duration are unused and will be removed eventually.

	
__init__(

	data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes] | Array,

	length: int [https://docs.python.org/3/library/functions.html#int],

	timestamp: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	duration: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	events: List [https://docs.python.org/3/library/typing.html#typing.List][MediaEvent] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
class SourceInfo

	Source metadata information.

Fields are the empty string or zero if the information is not available.

	Parameters:

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title

	author (str [https://docs.python.org/3/library/stdtypes.html#str]) – Author

	copyright (str [https://docs.python.org/3/library/stdtypes.html#str]) – Copyright statement

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Comment

	album (str [https://docs.python.org/3/library/stdtypes.html#str]) – Album name

	year (int [https://docs.python.org/3/library/functions.html#int]) – Year

	track (int [https://docs.python.org/3/library/functions.html#int]) – Track number

	genre (str [https://docs.python.org/3/library/stdtypes.html#str]) – Genre

New in version 1.2.

	
class Source

	An audio and/or video source.

	Parameters:

	
	audio_format (AudioFormat) – Format of the audio in this
source, or None if the source is silent.

	video_format (VideoFormat) – Format of the video in this
source, or None if there is no video.

	info (SourceInfo) – Source metadata such as title, artist,
etc; or None if the` information is not available.

New in version 1.2.

	Class Variables:

	is_player_source (bool) – Determine if this source is a player
current source.

Check on a Player if this source
is the current source.

	
get_animation() → Animation

	Import all video frames into memory.

An empty animation will be returned if the source has no video.
Otherwise, the animation will contain all unplayed video frames (the
entire source, if it has not been queued on a player). After creating
the animation, the source will be at EOS (end of stream).

This method is unsuitable for videos running longer than a
few seconds.

New in version 1.1.

	Return type:

	Animation

	Returns:

	pyglet.image.Animation

	
get_audio_data(

	num_bytes: int [https://docs.python.org/3/library/functions.html#int],

	compensation_time=0.0,

) → AudioData | None [https://docs.python.org/3/library/constants.html#None]

	Get next packet of audio data.

	Parameters:

	
	num_bytes (int [https://docs.python.org/3/library/functions.html#int]) – A size hint for the amount of bytes to return,
but the returned amount may be lower or higher.

	compensation_time (float [https://docs.python.org/3/library/functions.html#float]) – Time in sec to compensate due to a
difference between the master clock and the audio clock.

Deprecated since version 2.0.10: compensation_time: Will always be given as 0.0.

	Returns:

	Next packet of audio data, or None if
there is no (more) data.

	Return type:

	AudioData

	
get_next_video_frame() → AbstractImage | None [https://docs.python.org/3/library/constants.html#None]

	Get the next video frame.

New in version 1.1.

	Returns:

	The next video frame image,
or None if the video frame could not be decoded or there are
no more video frames.

	Return type:

	pyglet.image.AbstractImage

	
get_next_video_timestamp() → float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]

	Get the timestamp of the next video frame.

New in version 1.1.

	Returns:

	The next timestamp, or None if there are no more video
frames.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	
get_queue_source() → Source

	Return the Source to be used as the queue source for a player.

Default implementation returns self if this source is precise as
specified by is_precise() or if the imprecise_ok argument
is given. Otherwise, a new PreciseStreamingSource wrapping
this source is returned.

	Return type:

	Source

	Returns:

	Source

	
is_precise() → bool [https://docs.python.org/3/library/functions.html#bool]

	bool: Whether this source is considered precise.

x bytes on source s are considered aligned if
x % s.audio_format.bytes_per_frame == 0, so there’d be no partial
audio frame in the returned data.

A source is precise if - for an aligned request of x bytes - it
returns::rtype: bool [https://docs.python.org/3/library/functions.html#bool]

	If x or more bytes are available, x bytes.

	If not enough bytes are available anymore, r bytes where
r < x and r is aligned.

A source is not precise if it does any of these:

	Return less than x bytes for an aligned request of x
bytes although data still remains so that an additional request
would return additional AudioData / not None.

	Return more bytes than requested.

	Return an unaligned amount of bytes for an aligned request.

pyglet’s internals are guaranteed to never make unaligned
requests, or requests of less than 1024 bytes.

If this method returns False, pyglet will wrap the source in an
alignment-forcing buffer creating additional overhead.

If this method is overridden to return True although the source
does not comply with the requirements above, audio playback may be
negatively impacted at best and memory access violations occurr at
worst.

	Returns:

	bool: Whether the source is precise.

	
play() → Player

	Play the source.

This is a convenience method which creates a Player for
this source and plays it immediately.

	Return type:

	Player

	Returns:

	Player

	
save(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str],

	file: BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO] | None [https://docs.python.org/3/library/constants.html#None] = None,

	encoder: MediaEncoder | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Save this Source to a file.

	Parameters:

	
	filenamestr
	Used to set the file format, and to open the output file
if file is unspecified.

	filefile-like object or None
	File to write audio data to.

	encoderMediaEncoder or None
	If unspecified, all encoders matching the filename extension
are tried. If all fail, the exception from the first one
attempted is raised.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
seek(timestamp: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Seek to given timestamp.

	Parameters:

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – Time where to seek in the source. The
timestamp will be clamped to the duration of the source.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property duration: float [https://docs.python.org/3/library/functions.html#float]

	The length of the source, in seconds.

Not all source durations can be determined; in this case the value
is None.

Read-only.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class StreamingSource

	Bases: Source

A source that is decoded as it is being played.

The source can only be played once at a time on any
Player.

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Release the resources held by this StreamingSource.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_queue_source() → StreamingSource

	Return the Source to be used as the source for a player.

Default implementation returns self.

	Return type:

	StreamingSource

	Returns:

	Source

	
class StaticSource

	Bases: Source

A source that has been completely decoded in memory.

This source can be queued onto multiple players any number of times.

Construct a StaticSource for the data in
source.

	Parameters:

	source (Source) – The source to read and decode audio and video data
from.

	
__init__(source: Source) → None [https://docs.python.org/3/library/constants.html#None]

	

	
get_audio_data(

	num_bytes: float [https://docs.python.org/3/library/functions.html#float],

	compensation_time: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

) → AudioData | None [https://docs.python.org/3/library/constants.html#None]

	The StaticSource does not provide audio data.

When the StaticSource is queued on a
Player, it creates a
StaticMemorySource containing its internal audio data and
audio format.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] –

	Return type:

	AudioData | None [https://docs.python.org/3/library/constants.html#None]

	
get_queue_source() → StaticMemorySource | None [https://docs.python.org/3/library/constants.html#None]

	Return the Source to be used as the queue source for a player.

Default implementation returns self if this source is precise as
specified by is_precise() or if the imprecise_ok argument
is given. Otherwise, a new PreciseStreamingSource wrapping
this source is returned.

	Return type:

	StaticMemorySource | None [https://docs.python.org/3/library/constants.html#None]

	Returns:

	Source

	
class StaticMemorySource

	Bases: StaticSource

Helper class for default implementation of StaticSource.

Do not use directly. This class is used internally by pyglet.

	Parameters:

	
	data (readable buffer) – The audio data.

	audio_format (AudioFormat) – The audio format.

	
__init__(

	data,

	audio_format: AudioFormat,

) → None [https://docs.python.org/3/library/constants.html#None]

	Construct a memory source over the given data buffer.

	
get_audio_data(

	num_bytes: float [https://docs.python.org/3/library/functions.html#float],

	compensation_time: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

) → AudioData | None [https://docs.python.org/3/library/constants.html#None]

	Get next packet of audio data.

	Parameters:

	num_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of bytes of data to return.

	Returns:

	Next packet of audio data, or None if
there is no (more) data.

	Return type:

	AudioData

	
is_precise() → bool [https://docs.python.org/3/library/functions.html#bool]

	bool: Whether this source is considered precise.

x bytes on source s are considered aligned if
x % s.audio_format.bytes_per_frame == 0, so there’d be no partial
audio frame in the returned data.

A source is precise if - for an aligned request of x bytes - it
returns::rtype: bool [https://docs.python.org/3/library/functions.html#bool]

	If x or more bytes are available, x bytes.

	If not enough bytes are available anymore, r bytes where
r < x and r is aligned.

A source is not precise if it does any of these:

	Return less than x bytes for an aligned request of x
bytes although data still remains so that an additional request
would return additional AudioData / not None.

	Return more bytes than requested.

	Return an unaligned amount of bytes for an aligned request.

pyglet’s internals are guaranteed to never make unaligned
requests, or requests of less than 1024 bytes.

If this method returns False, pyglet will wrap the source in an
alignment-forcing buffer creating additional overhead.

If this method is overridden to return True although the source
does not comply with the requirements above, audio playback may be
negatively impacted at best and memory access violations occurr at
worst.

	Returns:

	bool: Whether the source is precise.

	
seek(timestamp: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Seek to given timestamp.

	Parameters:

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – Time where to seek in the source.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
class AbstractListener

	The listener properties for positional audio.

You can obtain the singleton instance of this class by calling
AbstractAudioDriver.get_listener().

	
property forward_orientation

	A vector giving the direction the
listener is facing.

The orientation is given as a tuple of floats (x, y, z), and has
no unit. The forward orientation should be orthagonal to the
up orientation.

	Type:

	3-tuple of float [https://docs.python.org/3/library/functions.html#float]

	
property position

	The position of the listener in 3D space.

The position is given as a tuple of floats (x, y, z). The unit
defaults to meters, but can be modified with the listener
properties.

	Type:

	3-tuple of float [https://docs.python.org/3/library/functions.html#float]

	
property up_orientation

	A vector giving the “up” orientation
of the listener.

The orientation is given as a tuple of floats (x, y, z), and has
no unit. The up orientation should be orthagonal to the
forward orientation.

	Type:

	3-tuple of float [https://docs.python.org/3/library/functions.html#float]

	
property volume

	The master volume for sound playback.

All sound volumes are multiplied by this master volume before being
played. A value of 0 will silence playback (but still consume
resources). The nominal volume is 1.0.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class MediaEvent

	Representation of a media event.

These events are used internally by some audio driver implementation to
communicate events to the Player.
One example is the on_eos event.

	Parameters:

	
	event (str [https://docs.python.org/3/library/stdtypes.html#str]) – Event description.

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – The time when this event happens.

	*args – Any required positional argument to go along with this event.

	
__init__(event, timestamp=0.0, *args)

	

Functions

	
get_audio_driver()

	Get the preferred audio driver for the current platform.

See pyglet.options audio, and the Programming guide,
section Playing Sound and Video for more information on
setting the preferred driver.

	Returns:

	
	The concrete implementation of the preferred
	audio driver for this platform.

	Return type:

	AbstractAudioDriver

	
load(filename, file=None, streaming=True, decoder=None)

	Load a Source from a file.

All decoders that are registered for the filename extension are tried.
If none succeed, the exception from the first decoder is raised.
You can also specifically pass a decoder to use.

	Parameters:

	
	filenamestr
	Used to guess the media format, and to load the file if file is
unspecified.

	filefile-like object or None
	Source of media data in any supported format.

	streamingbool
	If False, a StaticSource will be returned; otherwise
(default) a StreamingSource is created.

	decoderMediaDecoder or None
	A specific decoder you wish to use, rather than relying on
automatic detection. If specified, no other decoders are tried.

	Return type:

	StreamingSource or Source

	
have_ffmpeg()

	Check if FFmpeg library is available.

	Returns:

	True if FFmpeg is found.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

New in version 1.4.

Exceptions

	
exception CannotSeekException

	

	
exception MediaException

	

	
exception MediaFormatException

	

pyglet.media.synthesis

	
class ADSREnvelope

	A four part Attack, Decay, Suspend, Release envelope.

This is a four part ADSR envelope. The attack, decay, and release
parameters should be provided in seconds. For example, a value of
0.1 would be 100ms. The sustain_amplitude parameter affects the
sustain volume. This defaults to a value of 0.5, but can be provided
on a scale from 0.0 to 1.0.

	Parameters:

	
	attackfloat
	The attack time, in seconds.

	decayfloat
	The decay time, in seconds.

	releasefloat
	The release time, in seconds.

	sustain_amplitudefloat
	The sustain amplitude (volume), from 0.0 to 1.0.

	
__init__(attack, decay, release, sustain_amplitude=0.5)

	

	
get_generator(sample_rate, duration)

	

	
class FlatEnvelope

	A flat envelope, providing basic amplitude setting.

	Parameters:

	
	amplitudefloat
	The amplitude (volume) of the wave, from 0.0 to 1.0.
Values outside this range will be clamped.

	
__init__(amplitude=0.5)

	

	
get_generator(sample_rate, duration)

	

	
class LinearDecayEnvelope

	A linearly decaying envelope.

This envelope linearly decays the amplitude from the peak value
to 0, over the length of the waveform.

	Parameters:

	
	peakfloat
	The Initial peak value of the envelope, from 0.0 to 1.0.
Values outside this range will be clamped.

	
__init__(peak=1.0)

	

	
get_generator(sample_rate, duration)

	

	
class Sawtooth

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a Sawtooth waveform.

	
class Silence

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a Silent waveform.

	
class Sine

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a sinusoid (sine) waveform.

	
class Square

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a Square (pulse) waveform.

	
class SynthesisSource

	Base class for synthesized waveforms.

	Parameters:

	
	generatorA non-instantiated generator object
	A waveform generator that produces a stream of floats from (-1, 1)

	durationfloat
	The length, in seconds, of audio that you wish to generate.

	sample_rateint
	Audio samples per second. (CD quality is 44100).

	envelopepyglet.media.synthesis._Envelope
	An optional Envelope to apply to the waveform.

	
__init__(generator, duration, sample_rate=44800, envelope=None)

	

	
get_audio_data(num_bytes, compensation_time=0.0)

	Return num_bytes bytes of audio data.

	
is_precise() → bool [https://docs.python.org/3/library/functions.html#bool]

	bool: Whether this source is considered precise.

x bytes on source s are considered aligned if
x % s.audio_format.bytes_per_frame == 0, so there’d be no partial
audio frame in the returned data.

A source is precise if - for an aligned request of x bytes - it
returns::rtype: bool [https://docs.python.org/3/library/functions.html#bool]

	If x or more bytes are available, x bytes.

	If not enough bytes are available anymore, r bytes where
r < x and r is aligned.

A source is not precise if it does any of these:

	Return less than x bytes for an aligned request of x
bytes although data still remains so that an additional request
would return additional AudioData / not None.

	Return more bytes than requested.

	Return an unaligned amount of bytes for an aligned request.

pyglet’s internals are guaranteed to never make unaligned
requests, or requests of less than 1024 bytes.

If this method returns False, pyglet will wrap the source in an
alignment-forcing buffer creating additional overhead.

If this method is overridden to return True although the source
does not comply with the requirements above, audio playback may be
negatively impacted at best and memory access violations occurr at
worst.

	Returns:

	bool: Whether the source is precise.

	
seek(timestamp)

	Seek to given timestamp.

	Parameters:

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – Time where to seek in the source. The
timestamp will be clamped to the duration of the source.

	
class TremoloEnvelope

	A tremolo envelope, for modulation amplitude.

A tremolo envelope that modulates the amplitude of the
waveform with a sinusoidal pattern. The depth and rate
of modulation can be specified. Depth is calculated as
a percentage of the maximum amplitude. For example:
a depth of 0.2 and amplitude of 0.5 will fluctuate
the amplitude between 0.4 an 0.5.

	Parameters:

	
	depthfloat
	The amount of fluctuation, from 0.0 to 1.0.

	ratefloat
	The fluctuation frequency, in seconds.

	amplitudefloat
	The peak amplitude (volume), from 0.0 to 1.0.

	
__init__(depth, rate, amplitude=0.5)

	

	
get_generator(sample_rate, duration)

	

	
class Triangle

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a Triangle waveform.

	
class WhiteNoise

	
	
__init__(duration, frequency=440, sample_rate=44800, envelope=None)

	Create a random white noise waveform.

	
composite_operator(*operators)

	

	
noise_generator(frequency, sample_rate)

	

	
pulse_generator(frequency, sample_rate, duty_cycle=50)

	

	
sawtooth_generator(frequency, sample_rate)

	

	
silence_generator(frequency, sample_rate)

	

	
sine_generator(frequency, sample_rate)

	

	
sine_operator(

	sample_rate=44800,

	frequency=440,

	index=1,

	modulator=None,

	envelope=None,

)

	A sine wave generator that can be optionally modulated with another generator.

This generator represents a single FM Operator. It can be used by itself as a
simple sine wave, or modulated by another waveform generator. Multiple operators
can be linked together in this way. For example:

operator1 = sine_operator(samplerate=44800, frequency=1.22)
operator2 = sine_operator(samplerate=44800, frequency=99, modulator=operator1)
operator3 = sine_operator(samplerate=44800, frequency=333, modulator=operator2)
operator4 = sine_operator(samplerate=44800, frequency=545, modulator=operator3)

	Parameters:

	
	sample_rateint
	Audio samples per second. (CD quality is 44100).

	frequencyfloat
	The frequency, in Hz, of the waveform you wish to generate.

	indexfloat
	The modulation index. Defaults to 1

	modulatorsine_operator
	An optional operator to modulate this one.

	envelopepyglet.media.synthesis._Envelope
	An optional Envelope to apply to the waveform.

	
triangle_generator(frequency, sample_rate)

	

pyglet.resource

Load application resources from a known path.

Loading resources by specifying relative paths to filenames is often
problematic in Python, as the working directory is not necessarily the same
directory as the application’s script files.

This module allows applications to specify a search path for resources.
Relative paths are taken to be relative to the application’s __main__
module. ZIP files can appear on the path; they will be searched inside. The
resource module also behaves as expected when applications are bundled using
Freezers such as PyInstaller, Nuitka, py2app, etc..

In addition to providing file references (with the file() function),
the resource module also contains convenience functions for loading images,
textures, fonts, media and documents.

3rd party modules or packages not bound to a specific application should
construct their own Loader instance and override the path to use the
resources in the module’s directory.

Path format

The resource path path (see also Loader.__init__() and
Loader.path())
is a list of locations to search for resources. Locations are searched in the
order given in the path. If a location is not valid (for example, if the
directory does not exist), it is skipped.

Locations in the path beginning with an “at” symbol (‘’@’’) specify
Python packages. Other locations specify a ZIP archive or directory on the
filesystem. Locations that are not absolute are assumed to be relative to the
script home. Some examples:

Search just the `res` directory, assumed to be located alongside the
main script file.
path = ['res']

Search the directory containing the module `levels.level1`, followed
by the `res/images` directory.
path = ['@levels.level1', 'res/images']

Paths are always case-sensitive and forward slashes are always used
as path separators, even in cases when the filesystem or platform does not do this.
This avoids a common programmer error when porting applications between platforms.

The default path is ['.']. If you modify the path, you must call
reindex().

	
exception ResourceNotFoundException

	The named resource was not found on the search path.

	
__init__(name)

	

	
exception UndetectableShaderType

	The type of the Shader source could not be identified.

	
__init__(name)

	

	
class FileLocation

	Location on the filesystem.

	
__init__(filepath: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a location given a relative or absolute path.

	
open(filename: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rb') → IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Open a file at this location.

	Parameters:

	
	name – The file name to open. Absolute paths are not supported.
Relative paths are not supported by most locations (you
should specify only a file name with no path component).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file mode to open with. Only files opened on the
filesystem make use of this parameter; others ignore it.

	Return type:

	IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
class Loader

	Load program resource files from disk.

The loader contains a search path which can include filesystem
directories, ZIP archives, URLs, and Python packages.

	
__init__(

	pathlist: list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None,

	script_home: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a loader for the given path.

If no path is specified it defaults to ['.']; that is,
just the program directory.

See the module documentation for details on the path format.

	Parameters:

	
	pathlist (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None]) – List of locations to search for resources.

	script_home (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Base location of relative files. Defaults to
the result of get_script_home().

	
add_font(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a font resource to the application.

Fonts not installed on the system must be added to pyglet before they
can be used with font.load. Although the font is added with its
filename using this function, fonts are always loaded by specifying
their family name. For example:

resource.add_font('action_man.ttf')
action_man = font.load('Action Man')

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
animation(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Animation

	Load an animation with optional transformation.

Animations loaded from the same source but with different
transformations will use the same textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the animation source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (must be a multiple of 90).

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Animation

	
attributed(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an attributed text document.

See pyglet.text.formats.attributed for details on this format.

	Return type:

	AbstractDocument

	
file(name: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rb') → BytesIO | StringIO | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Load a file-like object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the resource to load.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Combination of r, w, a, b and t characters
with the meaning as for the builtin open function.

	Return type:

	BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] | StringIO [https://docs.python.org/3/library/io.html#io.StringIO] | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
get_cached_animation_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of animation filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_cached_image_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of image filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_cached_texture_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of texture filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_texture_bins() → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.image.atlas.TextureBin]

	Get a list of texture bins in use.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TextureBin]

	
html(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an HTML document.

	Return type:

	AbstractDocument

	
image(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	atlas: bool [https://docs.python.org/3/library/functions.html#bool] = True,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Texture | TextureRegion

	Load an image with optional transformation.

This is similar to texture, except the resulting image will be
packed into a TextureBin (TextureAtlas)
if it is an appropriate size for packing. This is more efficient than
loading images into separate textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the image source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (a multiple of 90).

	atlas (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the image will be loaded into an atlas managed by
pyglet. If atlas loading is not appropriate for specific texturing
reasons (e.g. border control is required) then set to False.

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Texture | TextureRegion

Note

When using flip_x/y or rotate, the actual image
data is not modified. Instead, the texture coordinates
are manipulated to produce the desired result.

	
location(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str],

) → FileLocation | URLLocation | ZIPLocation

	Get the location of a resource.

This method is useful for opening files referenced from a resource.
For example, an HTML file loaded as a resource might reference some
images. These images should be located relative to the HTML file, not
looked up individually in the loader’s path.

	Return type:

	FileLocation | URLLocation | ZIPLocation

	
media(name: str [https://docs.python.org/3/library/stdtypes.html#str], streaming: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Source

	Load a sound or video resource.

The meaning of streaming is as for load().
Compressed sources cannot be streamed (that is, video and compressed
audio cannot be streamed from a ZIP archive).

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the media source to load.

	streaming (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the source should be streamed from disk, False if
it should be entirely decoded into memory immediately.

	Return type:

	Source

	
model(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Model

	Load a 3D model.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the 3D model to load.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – An optional Batch instance to add this model to.

	Return type:

	Model

	
reindex()

	Refresh the file index.

You must call this method if resource.path is changed,
or the filesystem layout changes.

	
shader(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	shader_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Shader

	Load a Shader object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the Shader source to load.

	shader_type (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – A hint for the type of shader, such as ‘vertex’, ‘fragment’, etc.
Not required if your shader has a standard file extension, such
as .vert, .frag, etc..

	Return type:

	Shader

	
text(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load a plain text document.

	Return type:

	AbstractDocument

	
texture(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Texture

	Load an image as a single OpenGL texture.

	Return type:

	Texture

	
class Location

	Abstract resource location.

Given a location, a file can be loaded from that location with the
open() method. This provides a convenient way to specify a
path to load files from, even when that path does not reside on the
filesystem.

	
open(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rb',

) → BytesIO | StringIO | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Open a file at this location.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file name to open. Absolute paths are not supported.
Relative paths are not supported by most locations (you
should specify only a file name with no path component).

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file mode to open with. Only files opened on the
filesystem make use of this parameter; others ignore it.

	Return type:

	BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] | StringIO [https://docs.python.org/3/library/io.html#io.StringIO] | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
class URLLocation

	Location on the network.

This class uses the urllib module to open files on
the network, given a base URL.

	
__init__(base_url: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Create a location given a base URL.

	
open(filename: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Open a remote file.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the remote resource to open.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unused, as the mode is determined by the remote server.

	Return type:

	IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
class ZIPLocation

	Location within a ZIP file.

	
__init__(zipfileobj: ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile], directory: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None])

	Create a location given an open ZIP file and a path within that
file.

	Parameters:

	
	zipfileobj (ZipFile [https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile]) – An open ZIP file from the zipfile module.

	directory (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – A path within that ZIP file. Can be empty to specify files at
the top level of the ZIP file.

	
open(filename: str [https://docs.python.org/3/library/stdtypes.html#str], mode='rb') → BytesIO | StringIO

	Open a file from inside the ZipFile.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename to open.

	mode – Valid modes are ‘r’ and ‘rb’.

	Return type:

	BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] | StringIO [https://docs.python.org/3/library/io.html#io.StringIO]

	
add_font(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a font resource to the application.

Fonts not installed on the system must be added to pyglet before they
can be used with font.load. Although the font is added with its
filename using this function, fonts are always loaded by specifying
their family name. For example:

resource.add_font('action_man.ttf')
action_man = font.load('Action Man')

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
animation(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Animation

	Load an animation with optional transformation.

Animations loaded from the same source but with different
transformations will use the same textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the animation source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (must be a multiple of 90).

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Animation

	
attributed(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an attributed text document.

See pyglet.text.formats.attributed for details on this format.

	Return type:

	AbstractDocument

	
file(name: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rb') → BytesIO | StringIO | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Load a file-like object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the resource to load.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Combination of r, w, a, b and t characters
with the meaning as for the builtin open function.

	Return type:

	BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] | StringIO [https://docs.python.org/3/library/io.html#io.StringIO] | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
get_cached_animation_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of animation filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_cached_image_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of image filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_cached_texture_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of texture filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_data_path(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a directory to save user data.

For a Posix or Linux based system many distributions have a separate
directory to store user data for a specific application and this
function returns the path to that location.

On Linux, a directory name in the user’s data directory is returned
(usually under ~/.local/share).

On Windows (including under Cygwin) the name directory in the user’s
Application Settings directory is returned.

On Mac OS X the name directory under ~/Library/Application Support
is returned.
:rtype: str [https://docs.python.org/3/library/stdtypes.html#str]

Note

This function does not perform any directory creation. Users
should use os.path.exists and os.makedirs to construct
the directory if desired.

	
get_script_home() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the directory containing the program entry module.

For ordinary Python scripts, this is the directory containing the
__main__ module. For applications that have been bundled with
PyInstaller, Nuitka, etc., this may be the bundle path or a
temporary directory.

If none of the above cases apply and the file for __main__ cannot
be determined the working directory is returned.

When the script is being run by a Python profiler, this function
may return the directory where the profiler is running instead of
the directory of the real script. To work around this behaviour the
full path to the real script can be specified in pyglet.resource.path.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_settings_path(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a directory path to save user preferences.

Different platforms have different conventions for where to save user
preferences and settings. This function implements those conventions
as described below, and returns a fully formed path.

On Linux, a directory name in the user’s configuration directory is
returned (usually under ~/.config).

On Windows (including under Cygwin) the name directory in the user’s
Application Settings directory is returned.

On Mac OS X the name directory under ~/Library/Application Support
is returned.
:rtype: str [https://docs.python.org/3/library/stdtypes.html#str]

Note

This function does not perform any directory creation. Users
should use os.path.exists and os.makedirs to construct
the directory if desired.

	
get_texture_bins() → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.image.atlas.TextureBin]

	Get a list of texture bins in use.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TextureBin]

	
html(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an HTML document.

	Return type:

	AbstractDocument

	
image(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	atlas: bool [https://docs.python.org/3/library/functions.html#bool] = True,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Texture | TextureRegion

	Load an image with optional transformation.

This is similar to texture, except the resulting image will be
packed into a TextureBin (TextureAtlas)
if it is an appropriate size for packing. This is more efficient than
loading images into separate textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the image source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (a multiple of 90).

	atlas (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the image will be loaded into an atlas managed by
pyglet. If atlas loading is not appropriate for specific texturing
reasons (e.g. border control is required) then set to False.

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Texture | TextureRegion

Note

When using flip_x/y or rotate, the actual image
data is not modified. Instead, the texture coordinates
are manipulated to produce the desired result.

	
location(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str],

) → FileLocation | URLLocation | ZIPLocation

	Get the location of a resource.

This method is useful for opening files referenced from a resource.
For example, an HTML file loaded as a resource might reference some
images. These images should be located relative to the HTML file, not
looked up individually in the loader’s path.

	Return type:

	FileLocation | URLLocation | ZIPLocation

	
media(name: str [https://docs.python.org/3/library/stdtypes.html#str], streaming: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Source

	Load a sound or video resource.

The meaning of streaming is as for load().
Compressed sources cannot be streamed (that is, video and compressed
audio cannot be streamed from a ZIP archive).

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the media source to load.

	streaming (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the source should be streamed from disk, False if
it should be entirely decoded into memory immediately.

	Return type:

	Source

	
model(name: str [https://docs.python.org/3/library/stdtypes.html#str], batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None) → Model

	Load a 3D model.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the 3D model to load.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – An optional Batch instance to add this model to.

	Return type:

	Model

	
reindex()

	Refresh the file index.

You must call this method if resource.path is changed,
or the filesystem layout changes.

	
shader(name: str [https://docs.python.org/3/library/stdtypes.html#str], shader_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Shader

	Load a Shader object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the Shader source to load.

	shader_type (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – A hint for the type of shader, such as ‘vertex’, ‘fragment’, etc.
Not required if your shader has a standard file extension, such
as .vert, .frag, etc..

	Return type:

	Shader

	
text(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load a plain text document.

	Return type:

	AbstractDocument

	
texture(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Texture

	Load an image as a single OpenGL texture.

	Return type:

	Texture

	
path = ['.']

	Default resource search path.

Locations in the search path are searched in order and are always
case-sensitive. After changing the path you must call reindex.

See the module documentation for details on the path format.

	Type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

Functions

	
reindex()

	Refresh the file index.

You must call this method if resource.path is changed,
or the filesystem layout changes.

	
file(name: str [https://docs.python.org/3/library/stdtypes.html#str], mode: str [https://docs.python.org/3/library/stdtypes.html#str] = 'rb') → BytesIO | StringIO | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	Load a file-like object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the resource to load.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Combination of r, w, a, b and t characters
with the meaning as for the builtin open function.

	Return type:

	BytesIO [https://docs.python.org/3/library/io.html#io.BytesIO] | StringIO [https://docs.python.org/3/library/io.html#io.StringIO] | IO [https://docs.python.org/3/library/typing.html#typing.IO]

	
location(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str],

) → FileLocation | URLLocation | ZIPLocation

	Get the location of a resource.

This method is useful for opening files referenced from a resource.
For example, an HTML file loaded as a resource might reference some
images. These images should be located relative to the HTML file, not
looked up individually in the loader’s path.

	Return type:

	FileLocation | URLLocation | ZIPLocation

	
add_font(filename: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Add a font resource to the application.

Fonts not installed on the system must be added to pyglet before they
can be used with font.load. Although the font is added with its
filename using this function, fonts are always loaded by specifying
their family name. For example:

resource.add_font('action_man.ttf')
action_man = font.load('Action Man')

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
image(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	atlas: bool [https://docs.python.org/3/library/functions.html#bool] = True,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Texture | TextureRegion

	Load an image with optional transformation.

This is similar to texture, except the resulting image will be
packed into a TextureBin (TextureAtlas)
if it is an appropriate size for packing. This is more efficient than
loading images into separate textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The filename of the image source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (a multiple of 90).

	atlas (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the image will be loaded into an atlas managed by
pyglet. If atlas loading is not appropriate for specific texturing
reasons (e.g. border control is required) then set to False.

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Texture | TextureRegion

Note

When using flip_x/y or rotate, the actual image
data is not modified. Instead, the texture coordinates
are manipulated to produce the desired result.

	
animation(

	name: str [https://docs.python.org/3/library/stdtypes.html#str],

	flip_x: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	flip_y: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	rotate: int [https://docs.python.org/3/library/functions.html#int] = 0,

	border: int [https://docs.python.org/3/library/functions.html#int] = 1,

) → Animation

	Load an animation with optional transformation.

Animations loaded from the same source but with different
transformations will use the same textures.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the animation source to load.

	flip_x (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped horizontally.

	flip_y (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the returned image will be flipped vertically.

	rotate (int [https://docs.python.org/3/library/functions.html#int]) – The returned image will be rotated clockwise by the given
number of degrees (must be a multiple of 90).

	border (int [https://docs.python.org/3/library/functions.html#int]) – Leaves specified pixels of blank space around each image in
an atlas, which may help reduce texture bleeding.

	Return type:

	Animation

	
texture(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Texture

	Load an image as a single OpenGL texture.

	Return type:

	Texture

	
media(name: str [https://docs.python.org/3/library/stdtypes.html#str], streaming: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Source

	Load a sound or video resource.

The meaning of streaming is as for load().
Compressed sources cannot be streamed (that is, video and compressed
audio cannot be streamed from a ZIP archive).

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the media source to load.

	streaming (bool [https://docs.python.org/3/library/functions.html#bool]) – True if the source should be streamed from disk, False if
it should be entirely decoded into memory immediately.

	Return type:

	Source

	
model(name: str [https://docs.python.org/3/library/stdtypes.html#str], batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None) → Model

	Load a 3D model.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the 3D model to load.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – An optional Batch instance to add this model to.

	Return type:

	Model

	
shader(name: str [https://docs.python.org/3/library/stdtypes.html#str], shader_type: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None) → Shader

	Load a Shader object.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the Shader source to load.

	shader_type (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – A hint for the type of shader, such as ‘vertex’, ‘fragment’, etc.
Not required if your shader has a standard file extension, such
as .vert, .frag, etc..

	Return type:

	Shader

	
html(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an HTML document.

	Return type:

	AbstractDocument

	
attributed(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load an attributed text document.

See pyglet.text.formats.attributed for details on this format.

	Return type:

	AbstractDocument

	
text(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → AbstractDocument

	Load a plain text document.

	Return type:

	AbstractDocument

	
get_cached_image_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of image filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_cached_animation_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of animation filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_texture_bins() → list [https://docs.python.org/3/library/stdtypes.html#list][pyglet.image.atlas.TextureBin]

	Get a list of texture bins in use.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][TextureBin]

	
get_cached_texture_names() → list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get a list of texture filenames that have been cached.

This is useful for debugging and profiling only.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

Exceptions

	
class ResourceNotFoundException

	The named resource was not found on the search path.

	
__init__(name)

	

	
class UndetectableShaderType

	The type of the Shader source could not be identified.

	
__init__(name)

	

pyglet.sprite

Display positioned, scaled and rotated images.

A sprite is an instance of an image displayed on-screen. Multiple sprites can
display the same image at different positions on the screen. Sprites can also
be scaled larger or smaller, rotated at any angle and drawn at a fractional
opacity.

The following complete example loads a "ball.png" image and creates a
sprite for that image. The sprite is then drawn in the window’s
draw event handler:

import pyglet

ball_image = pyglet.image.load('ball.png')
ball = pyglet.sprite.Sprite(ball_image, x=50, y=50)

window = pyglet.window.Window()

@window.event
def on_draw():
 ball.draw()

pyglet.app.run()

The sprite can be moved by modifying the x and
y properties. Other
properties determine the sprite’s rotation,
scale and
opacity.

By default, sprite coordinates are restricted to integer values to avoid
sub-pixel artifacts. If you require to use floats, for example for smoother
animations, you can set the subpixel parameter to True when creating
the sprite (:since: pyglet 1.2).

The sprite’s positioning, rotation and scaling all honor the original
image’s anchor (anchor_x,
anchor_y).

Drawing multiple sprites

Sprites can be “batched” together and drawn at once more quickly than if each
of their draw methods were called individually. The following example
creates one hundred ball sprites and adds each of them to a Batch. The
entire batch of sprites is then drawn in one call:

batch = pyglet.graphics.Batch()

ball_sprites = []
for i in range(100):
 x, y = i * 10, 50
 ball_sprites.append(pyglet.sprite.Sprite(ball_image, x, y, batch=batch))

@window.event
def on_draw():
 batch.draw()

Sprites can be freely modified in any way even after being added to a batch,
however a sprite can belong to at most one batch. See the documentation for
pyglet.graphics for more details on batched rendering, and grouping of
sprites within batches.

New in version 1.1.

	
class Sprite

	Presend and manipulate an on-screen image.

See the module documentation for usage.

Methods

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Force immediate removal of the sprite from video memory.

It is recommended to call this whenever you delete a sprite,
as the Python garbage collector will not necessarily call the
finalizer as soon as the sprite falls out of scope.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
draw() → None [https://docs.python.org/3/library/constants.html#None]

	Draw the sprite at its current position.

See the module documentation for hints on drawing multiple sprites
efficiently.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
update(

	x: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	y: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	z: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	rotation: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	scale: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	scale_x: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	scale_y: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Simultaneously change the position, rotation or scale.

This method is provided for convenience. There is not much
performance benefit to updating multiple Sprite attributes at once.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – X coordinate of the sprite.

	y (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Y coordinate of the sprite.

	z (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Z coordinate of the sprite.

	rotation (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Clockwise rotation of the sprite, in degrees.

	scale (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Scaling factor.

	scale_x (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Horizontal scaling factor.

	scale_y (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Vertical scaling factor.

Events

	
on_animation_end()

	The sprite animation reached the final frame.

The event is triggered only if the sprite has an animation, not an
image. For looping animations, the event is triggered each time
the animation loops.

Attributes

	
batch

	Graphics batch.

The sprite can be migrated from one batch to another, or removed from
its batch (for individual drawing). Note that this can be an expensive
operation.

	
color

	Blend color.

This property sets the color of the sprite’s vertices. This allows the
sprite to be drawn with a color tint.

The color is specified as either an RGBA tuple of integers
‘(red, green, blue, opacity)’ or an RGB tuple of integers
(red, blue, green).

If there are fewer than three components, a :py:func`ValueError`
will be raised. Each color component must be an int in the range
0 (dark) to 255 (saturated). If any component is not an int, a
TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] will be raised.

	
group

	Parent graphics group.

The Sprite can change its rendering group, however this
can be a relatively expensive operation.

	
height

	Scaled height of the sprite.

Invariant under rotation.

	
image

	The Sprite’s Image or Animation to display.

	
opacity

	Blend opacity.

This property sets the alpha component of the colour of the sprite’s
vertices. With the default blend mode (see the constructor), this
allows the sprite to be drawn with fractional opacity, blending with the
background.

An opacity of 255 (the default) has no effect. An opacity of 128 will
make the sprite appear translucent.

	
position

	The (x, y, z) coordinates of the sprite, as a tuple.

	
rotation

	Clockwise rotation of the sprite, in degrees.

The sprite image will be rotated about its image’s (anchor_x, anchor_y)
position.

	
scale

	Base Scaling factor.

A scaling factor of 1.0 (the default) has no effect. A scale of
2.0 will draw the sprite at twice the native size of its image.

	
scale_x

	Horizontal scaling factor.

A scaling factor of 1.0 (the default) has no effect. A scale of
2.0 will draw the sprite at twice the native width of its image.

	
scale_y

	Vertical scaling factor.

A scaling factor of 1.0 (the default) has no effect. A scale of
2.0 will draw the sprite at twice the native height of its image.

	
visible

	True if the sprite will be drawn.

	
width

	Scaled width of the sprite.

Invariant under rotation.

	
x

	X coordinate of the sprite.

	
y

	Y coordinate of the sprite.

	
__init__(

	img: AbstractImage | Animation,

	x: float [https://docs.python.org/3/library/functions.html#float] = 0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0,

	blend_src: int [https://docs.python.org/3/library/functions.html#int] = 770,

	blend_dest: int [https://docs.python.org/3/library/functions.html#int] = 771,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	subpixel: bool [https://docs.python.org/3/library/functions.html#bool] = False,

)

	Create a Sprite instance.

	Parameters:

	
	img (AbstractImage | Animation) – Image or Animation to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the sprite.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the sprite.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the sprite.

	blend_src (int [https://docs.python.org/3/library/functions.html#int]) – OpenGL blend source mode. The default is suitable for
compositing sprites drawn from back-to-front.

	blend_dest (int [https://docs.python.org/3/library/functions.html#int]) – OpenGL blend destination mode. The default is suitable for
compositing sprites drawn from back-to-front.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the sprite to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the sprite.

	subpixel (bool [https://docs.python.org/3/library/functions.html#bool]) – Allow floating-point coordinates for the sprite. By default,
coordinates are restricted to integer values.

	
__new__(**kwargs)

	

	
class SpriteGroup

	Shared Sprite rendering Group.

The Group defines custom __eq__ ane __hash__ methods, and so will
be automatically coalesced with other Sprite Groups sharing the same parent
Group, Texture and blend parameters.

	
__init__(

	texture: Texture,

	blend_src: int [https://docs.python.org/3/library/functions.html#int],

	blend_dest: int [https://docs.python.org/3/library/functions.html#int],

	program: ShaderProgram,

	parent: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a sprite group.

The group is created internally when a Sprite
is created; applications usually do not need to explicitly create it.

	Parameters:

	
	texture (Texture) – The (top-level) texture containing the sprite image.

	blend_src (int [https://docs.python.org/3/library/functions.html#int]) – OpenGL blend source mode; for example,
GL_SRC_ALPHA.

	blend_dest (int [https://docs.python.org/3/library/functions.html#int]) – OpenGL blend destination mode; for example,
GL_ONE_MINUS_SRC_ALPHA.

	program (ShaderProgram) – A custom ShaderProgram.

	parent (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group.

	
set_state() → None [https://docs.python.org/3/library/constants.html#None]

	Apply the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
unset_state() → None [https://docs.python.org/3/library/constants.html#None]

	Repeal the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

pyglet.shapes

2D shapes.

This module provides classes for a variety of simplistic 2D shapes,
such as Rectangles, Circles, and Lines. These shapes are made
internally from OpenGL primitives, and provide excellent performance
when drawn as part of a Batch.
Convenience methods are provided for positioning, changing color, opacity,
and rotation.
The Python in operator can be used to check whether a point is inside a shape.
(This is approximated with some shapes, such as Star).

If the shapes in this module don’t suit your needs, you have two
options:

	Your Goals

	Best Approach

	Simple shapes like those here

	Subclass ShapeBase

	Complex & optimized shapes

	See Shaders and Rendering to learn about
the low-level graphics API.

A simple example of drawing shapes:

import pyglet
from pyglet import shapes

window = pyglet.window.Window(960, 540)
batch = pyglet.graphics.Batch()

circle = shapes.Circle(700, 150, 100, color=(50, 225, 30), batch=batch)
square = shapes.Rectangle(200, 200, 200, 200, color=(55, 55, 255), batch=batch)
rectangle = shapes.Rectangle(250, 300, 400, 200, color=(255, 22, 20), batch=batch)
rectangle.opacity = 128
rectangle.rotation = 33
line = shapes.Line(100, 100, 100, 200, thickness=19, batch=batch)
line2 = shapes.Line(150, 150, 444, 111, thickness=4, color=(200, 20, 20), batch=batch)
star = shapes.Star(800, 400, 60, 40, num_spikes=20, color=(255, 255, 0), batch=batch)

@window.event
def on_draw():
 window.clear()
 batch.draw()

pyglet.app.run()

Note

Some Shapes, such as Line and Triangle,
have multiple coordinates.

These shapes treat their position as their
primary coordinate. Changing it or its components (the
x or y properties)
also moves all secondary coordinates by the same offset from
the previous position value. This allows
you to move these shapes without distorting them.

New in version 1.5.4.

	
class ShapeBase

	Base class for all shape objects.

A number of default shapes are provided in this module. Curves are
approximated using multiple vertices.

If you need shapes or functionality not provided in this module,
you can write your own custom subclass of ShapeBase by using
the provided shapes as reference.

Methods

	
draw() → None [https://docs.python.org/3/library/constants.html#None]

	Debug method to draw a single shape at its current position.
:rtype: None [https://docs.python.org/3/library/constants.html#None]

Warning

Avoid this inefficient method for everyday use!

Regular drawing should add shapes to a Batch
and call its draw() method.

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Force immediate removal of the shape from video memory.

You should usually call this whenever you delete a shape. Unless
you are using manual garbage collection, Python might not call
the finalizer as soon as the sprite falls out of scope.

Manual garbage collection is a very advanced technique. See
Python’s gc [https://docs.python.org/3/library/gc.html#module-gc] module documentation to learn more.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

Attributes

	
x

	Get/set the X coordinate of the shape’s position.

	To update both x and y, use
position instead.

	Shapes may vary slightly in how they use position

See position to learn more.

	
y

	Get/set the Y coordinate of the shape’s position.

This property has the following pitfalls:

	To update both x and y, use
position instead.

	Shapes may vary slightly in how they use position

See position to learn more.

	
position

	Get/set the (x, y) coordinates of the shape.

Tip

This is more efficient than setting x
and y separately!

All shapes default to rotating around their position. However,
the way they do so varies.

Shapes with a radius property will use this as their
center:

	Circle

	Ellipse

	Arc

	Sector

	Star

Others default to using it as their lower left corner.

	
rotation

	Get/set the shape’s clockwise rotation in degrees.

All shapes rotate around their anchor_position.
For most shapes, this defaults to both:

	The shape’s first vertex of the shape

	The lower left corner

Shapes with a radius property rotate around the
point the radius is measured from. This will be either
their center or the center of the circle they’re cut from:

These shapes rotate around their center:

	Circle

	Ellipse

	Star

These shapes rotate around the point of their angles:

	Arc

	Sector

	
anchor_x

	Get/set the X coordinate of the anchor point.

If you need to set both this and anchor_x, use
anchor_position instead.

	
anchor_y

	Get/set the Y coordinate of the anchor point.

If you need to set both this and anchor_x, use
anchor_position instead.

	
anchor_position

	Get/set the anchor’s (x, y) offset from position

This defines the point a shape rotates around. By default, it is
(0.0, 0.0). However:

	Its behavior may vary between shape classes.

	On many shapes, you can set the anchor or its components
(anchor_x and anchor_y) to custom values.

Since all anchor updates recalculate a shape’s vertices on the
CPU, this property is faster than updating anchor_x and
anchor_y separately.

	
color

	Get/set the shape’s color.

The color may set to:

	An RGBA tuple of integers (red, green, blue, alpha)

	An RGB tuple of integers (red, green, blue)

If an RGB color is set, the current alpha will be preserved.
Otherwise, the new alpha value will be used for the shape. Each
color component must be in the range 0 (dark) to 255 (saturated).

	
opacity

	Get/set the blend opacity of the shape.

Tip

To toggle visibility on/off, visible may be
more efficient!

Opacity is implemented as the alpha component of a shape’s
color. When part of a group with a default blend
mode of (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA), opacities
below 255 draw with fractional opacity over the background:

Example Values & Effects

	Opacity

	Effect

	255 (Default)

	Shape is fully opaque

	128

	Shape looks translucent

	0

	Invisible

	
visible

	Get/set whether the shape will be drawn at all.

For absolute showing / hiding, this is

	
group

	Get/set the shape’s Group.

You can migrate a shape from one group to another by setting
this property. Note that it can be an expensive (slow) operation.

If batch isn’t None, setting this property will
also trigger a batch migration.

	
batch

	Get/set the Batch for this shape.

Warning

Setting this to None currently breaks things!

Known issues include group breaking.

You can migrate a shape from one batch to another by setting
this property, but it can be an expensive (slow) operation.

	
__init__()

	

	
__new__(**kwargs)

	

	
class Arc

	Bases: ShapeBase

	
angle

	The angle of the arc, in degrees.

	
start_angle

	The start angle of the arc, in degrees.

	
thickness

	

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	radius: float [https://docs.python.org/3/library/functions.html#float],

	segments: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	angle: float [https://docs.python.org/3/library/functions.html#float] = 360.0,

	start_angle: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	closed: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	thickness: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	color=(255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create an Arc.

The Arc’s anchor point (x, y) defaults to its center.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the circle.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the circle.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – The desired radius.

	segments (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – You can optionally specify how many distinct line segments
the arc should be made from. If not specified it will be
automatically calculated using the formula:
max(14, int(radius / 1.25)).

	angle (float [https://docs.python.org/3/library/functions.html#float]) – The angle of the arc, in degrees. Defaults to 360.0, which is
a full circle.

	start_angle (float [https://docs.python.org/3/library/functions.html#float]) – The start angle of the arc, in radians. Defaults to 0.

	closed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the ends of the arc will be connected with a line.
defaults to False.

	thickness (float [https://docs.python.org/3/library/functions.html#float]) – The desired thickness or width of the line used for the arc.

	color – The RGB or RGBA color of the arc, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the circle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the circle.

	
__new__(**kwargs)

	

	
class BezierCurve

	Bases: ShapeBase

	
points

	Get/set the control points of the Bézier curve.

	
t

	Get/set the t in 100*t percent of the curve to draw.

	
thickness

	Get/set the line thickness for the Bézier curve.

	
__init__(

	*points: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]],

	t: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	segments: int [https://docs.python.org/3/library/functions.html#int] = 100,

	thickness: int [https://docs.python.org/3/library/functions.html#int] = 1.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a Bézier curve.

The curve’s anchor point (x, y) defaults to its first control point.

	Parameters:

	
	points (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]) – Control points of the curve. Points can be specified as multiple
lists or tuples of point pairs. Ex. (0,0), (2,3), (1,9)

	t (float [https://docs.python.org/3/library/functions.html#float]) – Draw 100*t percent of the curve. 0.5 means the curve
is half drawn and 1.0 means draw the whole curve.

	segments (int [https://docs.python.org/3/library/functions.html#int]) – You can optionally specify how many line segments the
curve should be made from.

	thickness (int [https://docs.python.org/3/library/functions.html#int]) – The desired thickness or width of the line used for the curve.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the curve, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the curve to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the curve.

	
__new__(**kwargs)

	

	
class Circle

	Bases: ShapeBase

	
radius

	Gets/set radius of the circle.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	radius: float [https://docs.python.org/3/library/functions.html#float],

	segments: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a circle.

The circle’s anchor point (x, y) defaults to the center of the circle.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the circle.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the circle.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – The desired radius.

	segments (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – You can optionally specify how many distinct triangles
the circle should be made from. If not specified it will
be automatically calculated using the formula:
max(14, int(radius / 1.25)).

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the circle, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the circle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the circle.

	
__new__(**kwargs)

	

	
class Ellipse

	Bases: ShapeBase

	
a

	Get/set the semi-major axes of the ellipse.

	
b

	Get/set the semi-minor axes of the ellipse.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	a: float [https://docs.python.org/3/library/functions.html#float],

	b: float [https://docs.python.org/3/library/functions.html#float],

	segments: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create an ellipse.

The ellipse’s anchor point (x, y) defaults to the center of
the ellipse.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the ellipse.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the ellipse.

	a (float [https://docs.python.org/3/library/functions.html#float]) – Semi-major axes of the ellipse.

	b (float [https://docs.python.org/3/library/functions.html#float]) – Semi-minor axes of the ellipse.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the ellipse, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the circle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the circle.

	
__new__(**kwargs)

	

	
class Sector

	Bases: ShapeBase

	
angle

	The angle of the sector, in degrees.

	
start_angle

	The start angle of the sector, in degrees.

	
radius

	Get/set the radius of the sector.

By default, this is in screen pixels. Your drawing / GL settings
may alter how this is drawn.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	radius: float [https://docs.python.org/3/library/functions.html#float],

	segments: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	angle: float [https://docs.python.org/3/library/functions.html#float] = 360.0,

	start_angle: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a Sector of a circle.

By default, (x, y) is used as:
* The sector’s anchor point
* The center of the circle the sector is cut from

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the sector.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the sector.

	radius (float [https://docs.python.org/3/library/functions.html#float]) – The desired radius.

	segments (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – You can optionally specify how many distinct triangles
the sector should be made from. If not specified it will
be automatically calculated using the formula:
max(14, int(radius / 1.25)).

	angle (float [https://docs.python.org/3/library/functions.html#float]) – The angle of the sector, in degrees. Defaults to 360,
which is a full circle.

	start_angle (float [https://docs.python.org/3/library/functions.html#float]) – The start angle of the sector, in degrees. Defaults to 0.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the circle, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the sector to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the sector.

	
__new__(**kwargs)

	

	
class Line

	Bases: ShapeBase

	
x2

	Get/set the 2nd X coordinate of the line.

	
y2

	Get/set the 2nd Y coordinate of the line.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	x2: float [https://docs.python.org/3/library/functions.html#float],

	y2: float [https://docs.python.org/3/library/functions.html#float],

	thickness: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a line.

The line’s anchor point defaults to the center of the line’s
thickness on the X axis, and the Y axis.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The first X coordinate of the line.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The first Y coordinate of the line.

	x2 (float [https://docs.python.org/3/library/functions.html#float]) – The second X coordinate of the line.

	y2 (float [https://docs.python.org/3/library/functions.html#float]) – The second Y coordinate of the line.

	thickness (float [https://docs.python.org/3/library/functions.html#float]) – The desired width of the line.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the line, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the line to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the line.

	
__new__(**kwargs)

	

	
class Rectangle

	Bases: ShapeBase

	
width

	Get/set width of the rectangle.

The new left and right of the rectangle will be set relative to
its anchor_x value.

	
height

	Get/set the height of the rectangle.

The bottom and top of the rectangle will be positioned relative
to its anchor_y value.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	width: float [https://docs.python.org/3/library/functions.html#float],

	height: float [https://docs.python.org/3/library/functions.html#float],

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a rectangle or square.

The rectangle’s anchor point defaults to the (x, y)
coordinates, which are at the bottom left.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The X coordinate of the rectangle.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The Y coordinate of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – The width of the rectangle.

	height (float [https://docs.python.org/3/library/functions.html#float]) – The height of the rectangle.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the circle, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the rectangle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the rectangle.

	
__new__(**kwargs)

	

	
class Box

	Bases: ShapeBase

	
width

	Get/set the width of the box.

Setting the width will position the left and right sides
relative to the box’s anchor_x value.

	
height

	Get/set the height of the Box.

Setting the height will set the bottom and top relative to the
box’s anchor_y value.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	width: float [https://docs.python.org/3/library/functions.html#float],

	height: float [https://docs.python.org/3/library/functions.html#float],

	thickness: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create an unfilled rectangular shape, with optional thickness.

The box’s anchor point defaults to the (x, y) coordinates,
which are placed at the bottom left.
Changing the thickness of the box will extend the walls inward;
the outward dimesions will not be affected.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The X coordinate of the box.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The Y coordinate of the box.

	width (float [https://docs.python.org/3/library/functions.html#float]) – The width of the box.

	height (float [https://docs.python.org/3/library/functions.html#float]) – The height of the box.

	thickness (float [https://docs.python.org/3/library/functions.html#float]) – The thickness of the lines that make up the box.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the box, specified as a tuple
of 3 or 4 ints in the range of 0-255. RGB colors will
be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the box to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the box.

	
__new__(**kwargs)

	

	
class BorderedRectangle

	Bases: ShapeBase

	
width

	Get/set width of the bordered rectangle.

The new left and right of the rectangle will be set relative to
its anchor_x value.

	
height

	Get/set the height of the bordered rectangle.

The bottom and top of the rectangle will be positioned relative
to its anchor_y value.

	
border_color

	Get/set the bordered rectangle’s border color.

To set the color of the interior fill, see color.

You can set the border color to either of the following:

	An RGBA tuple of integers (red, green, blue, alpha)

	An RGB tuple of integers (red, green, blue)

Setting the alpha on this property will change the alpha of
the entire shape, including both the fill and the border.

Each color component must be in the range 0 (dark) to 255 (saturated).

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	width: float [https://docs.python.org/3/library/functions.html#float],

	height: float [https://docs.python.org/3/library/functions.html#float],

	border: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255),

	border_color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (100, 100, 100),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a bordered rectangle.

The rectangle’s anchor point defaults to the (x, y) coordinates,
which are at the bottom left.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The X coordinate of the rectangle.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The Y coordinate of the rectangle.

	width (float [https://docs.python.org/3/library/functions.html#float]) – The width of the rectangle.

	height (float [https://docs.python.org/3/library/functions.html#float]) – The height of the rectangle.

	border (float [https://docs.python.org/3/library/functions.html#float]) – The thickness of the border.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA fill color of the rectangle, specified
as a tuple of 3 or 4 ints in the range of 0-255. RGB
colors will be treated as having an opacity of 255.

	border_color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA fill color of the border, specified
as a tuple of 3 or 4 ints in the range of 0-255. RGB
colors will be treated as having an opacity of 255.

The alpha values must match if you pass RGBA values to
both this argument and border_color. If they do not,
a ValueError will be raised informing you of the
ambiguity.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the rectangle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the rectangle.

	
__new__(**kwargs)

	

	
class Triangle

	Bases: ShapeBase

	
x2

	Get/set the X coordinate of the triangle’s 2nd vertex.

	
y2

	Get/set the Y coordinate of the triangle’s 2nd vertex.

	
x3

	Get/set the X coordinate of the triangle’s 3rd vertex.

	
y3

	Get/set the Y value of the triangle’s 3rd vertex.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	x2: float [https://docs.python.org/3/library/functions.html#float],

	y2: float [https://docs.python.org/3/library/functions.html#float],

	x3: float [https://docs.python.org/3/library/functions.html#float],

	y3: float [https://docs.python.org/3/library/functions.html#float],

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a triangle.

The triangle’s anchor point defaults to the first vertex point.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The first X coordinate of the triangle.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The first Y coordinate of the triangle.

	x2 (float [https://docs.python.org/3/library/functions.html#float]) – The second X coordinate of the triangle.

	y2 (float [https://docs.python.org/3/library/functions.html#float]) – The second Y coordinate of the triangle.

	x3 (float [https://docs.python.org/3/library/functions.html#float]) – The third X coordinate of the triangle.

	y3 (float [https://docs.python.org/3/library/functions.html#float]) – The third Y coordinate of the triangle.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the triangle, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the triangle to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the triangle.

	
__new__(**kwargs)

	

	
class Star

	Bases: ShapeBase

	
outer_radius

	Get/set outer radius of the star.

	
inner_radius

	Get/set the inner radius of the star.

	
num_spikes

	Number of spikes of the star.

	
__init__(

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	outer_radius: float [https://docs.python.org/3/library/functions.html#float],

	inner_radius: float [https://docs.python.org/3/library/functions.html#float],

	num_spikes: int [https://docs.python.org/3/library/functions.html#int],

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a star.

The star’s anchor point (x, y) defaults to the on-screen
center of the star.

	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – The X coordinate of the star.

	y (float [https://docs.python.org/3/library/functions.html#float]) – The Y coordinate of the star.

	outer_radius (float [https://docs.python.org/3/library/functions.html#float]) – The desired outer radius of the star.

	inner_radius (float [https://docs.python.org/3/library/functions.html#float]) – The desired inner radius of the star.

	num_spikes (int [https://docs.python.org/3/library/functions.html#int]) – The desired number of spikes of the star.

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The rotation of the star in degrees. A rotation of 0 degrees
will result in one spike lining up with the X axis in
positive direction.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the star, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the star to.

	group (Group) – Optional parent group of the star.

	
__new__(**kwargs)

	

	
class Polygon

	Bases: ShapeBase

	
__init__(

	*coordinates: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]],

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create a convex polygon.

The polygon’s anchor point defaults to the first vertex point.

	Parameters:

	
	coordinates (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]) – The coordinates for each point in the polygon. Each one
must be able to unpack to a pair of float-like X and Y
values.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the polygon, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the polygon to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the polygon.

	
__new__(**kwargs)

	

	
class MultiLine

	Bases: ShapeBase

	
thickness

	Get/set the line thickness of the multi-line.

	
__init__(

	*coordinates: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]],

	closed: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	thickness: float [https://docs.python.org/3/library/functions.html#float] = 1.0,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

)

	Create multiple connected lines from a series of coordinates.

The shape’s anchor point defaults to the first vertex point.

	Parameters:

	
	coordinates (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]] | Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][float [https://docs.python.org/3/library/functions.html#float]]) – The coordinates for each point in the shape. Each must
unpack like a tuple consisting of an X and Y float-like
value.

	closed (bool [https://docs.python.org/3/library/functions.html#bool]) – Set this to True to add a line connecting the first
and last points. The default is False

	thickness (float [https://docs.python.org/3/library/functions.html#float]) – The desired thickness or width used for the line segments.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – The RGB or RGBA color of the shape, specified as a
tuple of 3 or 4 ints in the range of 0-255. RGB colors
will be treated as having an opacity of 255.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional batch to add the shape to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional parent group of the shape.

	
__new__(**kwargs)

	

pyglet.text

Submodules

	pyglet.text.caret

	pyglet.text.document

	pyglet.text.layout

Details

Text formatting, layout and display.

This module provides classes for loading styled documents from text files,
HTML files and a pyglet-specific markup format. Documents can be styled with
multiple fonts, colours, styles, text sizes, margins, paragraph alignments,
and so on.

Using the layout classes, documents can be laid out on a single line or
word-wrapped to fit a rectangle. A layout can then be efficiently drawn in
a window or updated incrementally (for example, to support interactive text
editing).

The label classes provide a simple interface for the common case where an
application simply needs to display some text in a window.

A plain text label can be created with:

label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=10, y=10)

Alternatively, a styled text label using HTML can be created with:

label = pyglet.text.HTMLLabel('Hello, <i>world</i>',
 x=10, y=10)

Either label can then be drawn at any time with:

label.draw()

For details on the subset of HTML supported, see pyglet.text.formats.html.

Refer to the Programming Guide for advanced usage of the document and layout
classes, including interactive editing, embedding objects within documents and
creating scrollable layouts.

	
exception DocumentDecodeException

	An error occurred decoding document text.

	
class DocumentDecoder

	Abstract document decoder.

	
abstract decode(

	text: str [https://docs.python.org/3/library/stdtypes.html#str],

	location: Location | None [https://docs.python.org/3/library/constants.html#None] = None,

) → AbstractDocument

	Decode document text.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to decode

	location (Location | None [https://docs.python.org/3/library/constants.html#None]) – Location to use as base path for additional resources referenced within the document (for example,
HTML images).

	Return type:

	AbstractDocument

	
class DocumentLabel

	Base label class.

A label is a layout that exposes convenience methods for manipulating the
associated document.

	
__init__(

	document: AbstractDocument | None [https://docs.python.org/3/library/constants.html#None] = None,

	x: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	width: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'baseline',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

	init_document: bool [https://docs.python.org/3/library/functions.html#bool] = True,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a label for a given document.

	Parameters:

	
	document (AbstractDocument | None [https://docs.python.org/3/library/constants.html#None]) – Document to attach to the layout.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Width of the label in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Height of the label in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate: one of
"left", “center”` or "right".

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate: one of
"bottom", "baseline", "center" or "top".

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A
positive amount will be a clockwise rotation, negative
values will result in counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the label will be word-wrapped and
accept newline characters. You must also set the width
of the label.

	dpi (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Resolution of the fonts in this layout. Defaults to 96.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add the label to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics group to use.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs.

	init_document (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the document will be initialized. If you
are passing an already-initialized document, then you can
avoid duplicating work by setting this to False.

	
get_style(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get a document style value by name.

If the document has more than one value of the named style,
pyglet.text.document.STYLE_INDETERMINATE is returned.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Style name to query. See documentation from pyglet.text.layout for known style names.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
set_style(name: str [https://docs.python.org/3/library/stdtypes.html#str], value: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Set a document style value by name over the whole document.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the style to set. See documentation for
pyglet.text.layout for known style names.

	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Value of the style.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property bold: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]

	Bold font style.

	
property color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Text color.

Color is a 4-tuple of RGBA components, each in range [0, 255].

	
property font_name: str [https://docs.python.org/3/library/stdtypes.html#str] | list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Font family name.

The font name, as passed to pyglet.font.load(). A list of names can
optionally be given: the first matching font will be used.

	
property font_size: float [https://docs.python.org/3/library/functions.html#float]

	Font size, in points.

	
property italic: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]

	Italic font style.

	
property opacity: int [https://docs.python.org/3/library/functions.html#int]

	Blend opacity.

This property sets the alpha component of the colour of the label’s
vertices. With the default blend mode, this allows the layout to be
drawn with fractional opacity, blending with the background.

An opacity of 255 (the default) has no effect. An opacity of 128 will
make the label appear semi-translucent.

	
property text: str [https://docs.python.org/3/library/stdtypes.html#str]

	The text of the label.

	
class HTMLLabel

	HTML formatted text label.

A subset of HTML 4.01 is supported. See pyglet.text.formats.html for
details.

	
__init__(

	text: str [https://docs.python.org/3/library/stdtypes.html#str] = '',

	x: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	width: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'baseline',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	location: Location | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a label with an HTML string.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Width of the label in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Height of the label in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate: one of "left",
"center" or "right".

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate: one of "bottom",
"baseline", "center" or "top".

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A positive amount
will be a clockwise rotation, negative values will result in
counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the label will be word-wrapped and accept newline
characters. You must also set the width of the label.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Resolution of the fonts in this layout. Defaults to 96.

	location (Location | None [https://docs.python.org/3/library/constants.html#None]) – Location object for loading images referred to in the document.
By default, the working directory is used.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add the label to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics group to use.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs.

	
property text: str [https://docs.python.org/3/library/stdtypes.html#str]

	HTML formatted text of the label.

	
class Label

	Plain text label.

	
__init__(

	text: str [https://docs.python.org/3/library/stdtypes.html#str] = '',

	x: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	width: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'baseline',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0.0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	font_name: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

	font_size: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	bold: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	italic: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	stretch: bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str] = False,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (255, 255, 255, 255),

	align: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'top'] = 'left',

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a plain text label.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Width of the label in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Height of the label in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate: one of "left",
"center" or "right".

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate: one of "bottom",
"baseline", "center" or "top".

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A positive amount
will be a clockwise rotation, negative values will result in
counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the label will be word-wrapped and accept newline
characters. You must also set the width of the label.

	dpi (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Resolution of the fonts in this layout. Defaults to 96.

	font_name (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Font family name(s). If more than one name is given, the
first matching name is used.

	font_size (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Font size, in points.

	bold (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Bold font style.

	italic (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Italic font style.

	stretch (bool [https://docs.python.org/3/library/functions.html#bool] | str [https://docs.python.org/3/library/stdtypes.html#str]) – Stretch font style.

	color (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] | tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]) – Font color as RGBA or RGB components, each within
0 <= component <= 255.

	align (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'top']) – Horizontal alignment of text on a line, only applies if
a width is supplied. One of "left", "center"
or "right".

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add the label to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics group to use.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs.

	
decode_attributed(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → FormattedDocument

	Create a document directly from some attributed text.

See pyglet.text.formats.attributed for a description of attributed text.

	Return type:

	FormattedDocument

	
decode_html(

	text: str [https://docs.python.org/3/library/stdtypes.html#str],

	location: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → FormattedDocument

	Create a document directly from some HTML formatted text.

	Parameters:

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – HTML data to decode.

	location (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Location giving the base path for additional resources referenced from the document (e.g., images).

	Return type:

	FormattedDocument

	
decode_text(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → UnformattedDocument

	Create a document directly from some plain text.

	Return type:

	UnformattedDocument

	
get_decoder(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None],

	mimetype: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['text/plain', 'text/html', 'text/vnd.pyglet-attributed'] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → DocumentDecoder

	Get a document decoder for the given filename and MIME type.

If mimetype is omitted it is guessed from the filename extension.

The following MIME types are supported:

	text/plain
	Plain text

	text/html
	HTML 4 Transitional

	text/vnd.pyglet-attributed
	Attributed text; see pyglet.text.formats.attributed

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None]) – Filename to guess the MIME type from. If a MIME type is given, the filename is ignored.

	mimetype (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['text/plain', 'text/html', 'text/vnd.pyglet-attributed'] | None [https://docs.python.org/3/library/constants.html#None]) – MIME type to lookup, or None to guess the type from the filename.

	Raises:

	DocumentDecodeException – If MIME type is not from the supported types.

	Return type:

	DocumentDecoder

	
load(

	filename: str [https://docs.python.org/3/library/stdtypes.html#str],

	file: BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO] | None [https://docs.python.org/3/library/constants.html#None] = None,

	mimetype: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['text/plain', 'text/html', 'text/vnd.pyglet-attributed'] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → AbstractDocument

	Load a document from a file.

	Parameters:

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of document to load.

	file (BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO] | None [https://docs.python.org/3/library/constants.html#None]) – File object containing encoded data. If omitted, filename is
loaded from disk.

	mimetype (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['text/plain', 'text/html', 'text/vnd.pyglet-attributed'] | None [https://docs.python.org/3/library/constants.html#None]) – MIME type of the document. If omitted, the filename extension is
used to guess a MIME type. See get_decoder for a list of
supported MIME types.

	Return type:

	AbstractDocument

pyglet.text.caret

Provides keyboard and mouse editing procedures for text layout.

Example usage:

from pyglet import window
from pyglet.text import layout, caret

my_window = window.Window(...)
my_layout = layout.IncrementalTextLayout(...)
my_caret = caret.Caret(my_layout)
my_window.push_handlers(my_caret)

	
class Caret

	Visible text insertion marker for pyglet.text.layout.IncrementalTextLayout.

The caret is drawn as a single vertical bar at the document position
on a text layout object. If mark is not None, it gives the unmoving
end of the current text selection. The visible text selection on the
layout is updated along with mark and position.

By default, the layout’s graphics batch is used, so the caret does not need
to be drawn explicitly. Even if a different graphics batch is supplied,
the caret will be correctly positioned and clipped within the layout.

Updates to the document (and so the layout) are automatically propagated
to the caret.

The caret object can be pushed onto a window event handler stack with
Window.push_handlers. The caret will respond correctly to keyboard,
text, mouse and activation events, including double- and triple-clicks.
If the text layout is being used alongside other graphical widgets, a
GUI toolkit will be needed to delegate keyboard and mouse events to the
appropriate widget. Pyglet does not provide such a toolkit at this stage.

	
__init__(

	layout: IncrementalTextLayout,

	batch: Batch = None,

	color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]] = (0, 0, 0, 255),

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a caret for a layout.

By default the layout’s batch is used, so the caret does not need to
be drawn explicitly.

	Parameters:

	
	layout~pyglet.text.layout.IncrementalTextLayout
	Layout to control.

	batch~pyglet.graphics.Batch
	Graphics batch to add vertices to.

	color(int, int, int, int)
	An RGBA or RGB tuple with components in the range [0, 255].
RGB colors will be treated as having an opacity of 255.

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Remove the caret from its batch.

Also disconnects the caret from further layout events.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_style(attribute: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get the document’s named style at the caret’s current position.

If there is a text selection and the style varies over the selection,
pyglet.text.document.STYLE_INDETERMINATE is returned.

	Parameters:

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to retrieve. See
document for a list of recognised attribute
names.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	
move_to_point(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Move the caret close to the given window coordinate.

The mark will be reset to None.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_activate() → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_activate event.

The caret is hidden when the window is not active.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_deactivate() → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_deactivate event.

The caret is hidden when the window is not active.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_layout_update() → None [https://docs.python.org/3/library/constants.html#None]

	Handler for the IncrementalTextLayout.on_layout_update event.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_mouse_drag(

	x: int [https://docs.python.org/3/library/functions.html#int],

	y: int [https://docs.python.org/3/library/functions.html#int],

	dx: int [https://docs.python.org/3/library/functions.html#int],

	dy: int [https://docs.python.org/3/library/functions.html#int],

	buttons: int [https://docs.python.org/3/library/functions.html#int],

	modifiers: int [https://docs.python.org/3/library/functions.html#int],

) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_mouse_drag event.

Mouse handlers do not check the bounds of the coordinates: GUI
toolkits should filter events that do not intersect the layout
before invoking this handler.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_mouse_press(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int], button: int [https://docs.python.org/3/library/functions.html#int], modifiers: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_mouse_press event.

Mouse handlers do not check the bounds of the coordinates: GUI
toolkits should filter events that do not intersect the layout
before invoking this handler.

This handler keeps track of the number of mouse presses within
a short span of time and uses this to reconstruct double- and
triple-click events for selecting words and paragraphs. This
technique is not suitable when a GUI toolkit is in use, as the active
widget must also be tracked. Do not use this mouse handler if
a GUI toolkit is being used.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_mouse_scroll(x: float [https://docs.python.org/3/library/functions.html#float], y: float [https://docs.python.org/3/library/functions.html#float], scroll_x: float [https://docs.python.org/3/library/functions.html#float], scroll_y: float [https://docs.python.org/3/library/functions.html#float]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_mouse_scroll event.

Mouse handlers do not check the bounds of the coordinates: GUI
toolkits should filter events that do not intersect the layout
before invoking this handler.

The layout viewport is scrolled by SCROLL_INCREMENT pixels per
“click”.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_text(text: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_text event.

Caret keyboard handlers assume the layout always has keyboard focus.
GUI toolkits should filter keyboard and text events by widget focus
before invoking this handler.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_text_motion(motion: int [https://docs.python.org/3/library/functions.html#int], select: bool [https://docs.python.org/3/library/functions.html#bool] = False) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_text_motion event.

Caret keyboard handlers assume the layout always has keyboard focus.
GUI toolkits should filter keyboard and text events by widget focus
before invoking this handler.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_text_motion_select(motion: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Handler for the pyglet.window.Window.on_text_motion_select event.

Caret keyboard handlers assume the layout always has keyboard focus.
GUI toolkits should filter keyboard and text events by widget focus
before invoking this handler.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_translation_update() → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
select_all() → None [https://docs.python.org/3/library/constants.html#None]

	Select all text in the document.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
select_paragraph(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Select the paragraph at the given window coordinate.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
select_to_point(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Move the caret close to the given window coordinate while maintaining the mark.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
select_word(x: int [https://docs.python.org/3/library/functions.html#int], y: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Select the word at the given window coordinate.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_style(attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the document style at the caret’s current position.

If there is a text selection the style is modified immediately.
Otherwise, the next text that is entered before the position is
modified will take on the given style.

	Parameters:

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Dict mapping attribute names to style values. See
document for a list of recognised attribute
names.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
PERIOD: float [https://docs.python.org/3/library/functions.html#float] = 0.5

	Blink period, in seconds.

	
SCROLL_INCREMENT: int [https://docs.python.org/3/library/functions.html#int] = 16

	Pixels to scroll viewport per mouse scroll wheel movement.
Defaults to 12pt at 96dpi.

	
property color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	An RGBA tuple of the current caret color.

When blinking off, the alpha channel will be set to 0. The
default caret color when visible is (0, 0, 0, 255) (opaque black).

You may set the color to an RGBA or RGB color tuple.

Warning

This setter can fail for a short time after layout / window init!

Use __init__’s color keyword argument instead if you
run into this problem.

Each color channel must be between 0 and 255, inclusive. If the color
set to an RGB color, the previous alpha channel value will be used.

	
property layout: IncrementalTextLayout

	

	
property line: int [https://docs.python.org/3/library/functions.html#int]

	Index of line containing the caret’s position.

When set, position is modified to place the caret on requested line
while maintaining the closest possible X offset.

	
property mark: int [https://docs.python.org/3/library/functions.html#int]

	Position of immovable end of text selection within document.

An interactive text selection is determined by its immovable end (the
caret’s position when a mouse drag begins) and the caret’s position, which
moves interactively by mouse and keyboard input.

This property is None when there is no selection.

	
property position: int [https://docs.python.org/3/library/functions.html#int]

	Position of caret within document.

	
property visible: bool [https://docs.python.org/3/library/functions.html#bool]

	Caret visibility.

The caret may be hidden despite this property due to the periodic blinking
or by on_deactivate if the event handler is attached to a window.

pyglet.text.document

Formatted and unformatted document interfaces used by text layout.

Abstract representation

Styled text in pyglet is represented by one of the AbstractDocument classes,
which manage the state representation of text and style independently of how
it is loaded or rendered.

A document consists of the document text (a Unicode string) and a set of
named style ranges. For example, consider the following (artificial)
example:

0 5 10 15 20
The cat sat on the mat.
+++++++ +++++++ "bold"
 ++++++ "italic"

If this example were to be rendered, “The cat” and “the mat” would be in bold,
and “on the” in italics. Note that the second “the” is both bold and italic.

The document styles recorded for this example would be "bold" over ranges
(0-7, 15-22) and "italic" over range (12-18). Overlapping styles are
permitted; unlike HTML and other structured markup, the ranges need not be
nested.

The document has no knowledge of the semantics of "bold" or "italic",
it stores only the style names. The pyglet layout classes give meaning to
these style names in the way they are rendered; but you are also free to
invent your own style names (which will be ignored by the layout classes).
This can be useful to tag areas of interest in a document, or maintain
references back to the source material.

As well as text, the document can contain arbitrary elements represented by
InlineElement. An inline element behaves
like a single character in the document, but can be rendered by the application.

Paragraph breaks

Paragraph breaks are marked with a “newline” character (U+0010). The Unicode
paragraph break (U+2029) can also be used.

Line breaks (U+2028) can be used to force a line break within a paragraph.

See Unicode recommendation UTR #13 for more information:
https://www.unicode.org/standard/reports/tr13/tr13-5.html.

Document classes

Any class implementing AbstractDocument provides an interface to a
document model as described above. In theory a structured document such as
HTML or XML could export this model, though the classes provided by pyglet
implement only unstructured documents.

The UnformattedDocument class assumes any styles set are set over the entire
document. So, regardless of the range specified when setting a "bold"
style attribute, for example, the entire document will receive that style.

The FormattedDocument class implements the document model directly, using
the RunList class to represent style runs efficiently.

Style attributes

The following character style attribute names are recognised by pyglet:

	font_name
	Font family name, as given to pyglet.font.load().

	font_size
	Font size, in points.

	bold
	Boolean.

	italic
	Boolean.

	underline
	4-tuple of ints in range (0, 255) giving RGBA underline color, or None
(default) for no underline.

	kerning
	Additional space to insert between glyphs, in points. Defaults to 0.

	baseline
	Offset of glyph baseline from line baseline, in points. Positive values
give a superscript, negative values give a subscript. Defaults to 0.

	color
	4-tuple of ints in range (0, 255) giving RGBA text color

	background_color
	4-tuple of ints in range (0, 255) giving RGBA text background color; or
None for no background fill.

The following paragraph style attribute names are recognised by pyglet. Note
that paragraph styles are handled no differently from character styles by the
document: it is the application’s responsibility to set the style over an
entire paragraph, otherwise results are undefined.

	align
	left (default), center or right.

	indent
	Additional horizontal space to insert before the first

	leading
	Additional space to insert between consecutive lines within a paragraph,
in points. Defaults to 0.

	line_spacing
	Distance between consecutive baselines in a paragraph, in points.
Defaults to None, which automatically calculates the tightest line
spacing for each line based on the font ascent and descent.

	margin_left
	Left paragraph margin, in pixels.

	margin_right
	Right paragraph margin, in pixels.

	margin_top
	Margin above paragraph, in pixels.

	margin_bottom
	Margin below paragraph, in pixels. Adjacent margins do not collapse.

	tab_stops
	List of horizontal tab stops, in pixels, measured from the left edge of
the text layout. Defaults to the empty list. When the tab stops
are exhausted, they implicitly continue at 50 pixel intervals.

	wrap
	Boolean. If True (the default), text wraps within the width of the layout.

Other attributes can be used to store additional style information within the
document; it will be ignored by the built-in text classes.

All style attributes (including those not present in a document) default to
None (including the so-called “boolean” styles listed above). The meaning
of a None style is style- and application-dependent.

	
class AbstractDocument

	Abstract document interface used by all pyglet.text classes.

This class can be overridden to interface pyglet with a third-party
document format. It may be easier to implement the document format in
terms of one of the supplied concrete classes FormattedDocument or
UnformattedDocument.

	
__init__(text: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a document with text.

	Parameters:

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initial text string.

	
delete_text(start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Delete text from the document.

Dispatches an on_delete_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position to delete from.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position to delete to (exclusive).

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_element(position: int [https://docs.python.org/3/library/functions.html#int]) → InlineElement

	Get the element at a specified position.

	Parameters:

	position (int [https://docs.python.org/3/library/functions.html#int]) – Position in the document of the element.

	Return type:

	InlineElement

	
abstract get_font(

	position: int [https://docs.python.org/3/library/functions.html#int],

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Font

	Get the font instance used at the given position.

	See:

	get_font_runs

	Parameters:

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – Character position of document to query.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	Font

	
abstract get_font_runs(

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → AbstractRunIterator

	Get a style iterator over the pyglet.font.Font instances used in the document.

The font instances are created on-demand by inspection of the
font_name, font_size, bold and italic style
attributes.

	Parameters:

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	AbstractRunIterator

	
get_paragraph_end(pos: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the end position of a paragraph from the character position.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_paragraph_start(pos: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the starting position of a paragraph from the character position.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
abstract get_style(attribute: str [https://docs.python.org/3/library/stdtypes.html#str], position: int [https://docs.python.org/3/library/functions.html#int] = 0) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get an attribute style at the given position.

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	position (int [https://docs.python.org/3/library/functions.html#int]) – Character position of document to query.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns:

	The style set for the attribute at the given position.

	
get_style_range(attribute: str [https://docs.python.org/3/library/stdtypes.html#str], start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get an attribute style over the given range.

If the style varies over the range, STYLE_INDETERMINATE is returned.

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position (exclusive).

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns:

	The style set for the attribute over the given range, or STYLE_INDETERMINATE if more than one value is
set.

	
abstract get_style_runs(

	attribute: str [https://docs.python.org/3/library/stdtypes.html#str],

) → AbstractRunIterator

	Get a style iterator over the given style attribute.

	Parameters:

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	Return type:

	AbstractRunIterator

	
insert_element(

	position: int [https://docs.python.org/3/library/functions.html#int],

	element: InlineElement,

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Insert a element into the document.

See the InlineElement class documentation for details of usage.

	Parameters:

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – Character insertion point within document.

	element (InlineElement) – Element to insert.

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]) – dict
Optional dictionary giving named style attributes of the inserted text.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
insert_text(

	start: int [https://docs.python.org/3/library/functions.html#int],

	text: str [https://docs.python.org/3/library/stdtypes.html#str],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	Insert text into the document.

Dispatches an on_insert_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Character insertion point within document.

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text to insert.

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]) – Optional dictionary giving named style attributes of the inserted text.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_delete_text(start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Text was deleted from the document.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position of deleted text.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position of deleted text (exclusive).

	Event:

	

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_insert_text(start: int [https://docs.python.org/3/library/functions.html#int], text: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Text was inserted into the document.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Character insertion point within document.

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text that was inserted.

	Event:

	

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_style_text(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None],

) → None [https://docs.python.org/3/library/constants.html#None]

	Text character style was modified.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position of modified text.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position of modified text (exclusive).

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]] | None [https://docs.python.org/3/library/constants.html#None]) – Dictionary giving updated named style attributes of the text.

	Event:

	

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_paragraph_style(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Set the style for a range of paragraphs.

This is a convenience method for set_style that aligns the character range to the enclosing paragraph(s).

Dispatches an on_style_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position (exclusive).

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Dictionary giving named style attributes of the paragraphs.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_style(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Set text style of a range between start and end of the document.

Dispatches an on_style_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position (exclusive).

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Dictionary giving named style attributes of the text.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
event_types: list [https://docs.python.org/3/library/stdtypes.html#list] = ['on_insert_text', 'on_delete_text', 'on_style_text']

	

	
property text: str [https://docs.python.org/3/library/stdtypes.html#str]

	Document text.

For efficient incremental updates, use the insert_text() and
delete_text() methods instead of replacing this property.

	
class FormattedDocument

	Simple implementation of a document that maintains text formatting.

Changes to text style are applied according to the description in
AbstractDocument. All styles default to None.

	
__init__(text: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → None [https://docs.python.org/3/library/constants.html#None]

	Initialize a document with text.

	Parameters:

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initial text string.

	
get_element_runs() → _ElementIterator

	
	Return type:

	_ElementIterator

	
get_font(

	position: int [https://docs.python.org/3/library/functions.html#int],

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Font

	Get the font instance used at the given position.

	See:

	get_font_runs

	Parameters:

	
	position (int [https://docs.python.org/3/library/functions.html#int]) – Character position of document to query.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	Font

	
get_font_runs(

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → _FontStyleRunsRangeIterator

	Get a style iterator over the pyglet.font.Font instances used in the document.

The font instances are created on-demand by inspection of the
font_name, font_size, bold and italic style
attributes.

	Parameters:

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	_FontStyleRunsRangeIterator

	
get_style(attribute: str [https://docs.python.org/3/library/stdtypes.html#str], position: int [https://docs.python.org/3/library/functions.html#int] = 0) → Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Get an attribute style at the given position.

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	position (int [https://docs.python.org/3/library/functions.html#int]) – Character position of document to query.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any] | None [https://docs.python.org/3/library/constants.html#None]

	Returns:

	The style set for the attribute at the given position.

	
get_style_runs(

	attribute: str [https://docs.python.org/3/library/stdtypes.html#str],

) → RunIterator | _NoStyleRangeIterator

	Get a style iterator over the given style attribute.

	Parameters:

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	Return type:

	RunIterator | _NoStyleRangeIterator

	
class InlineElement

	Arbitrary inline element positioned within a formatted document.

Elements behave like a single glyph in the document. They are
measured by their horizontal advance, ascent above the baseline, and
descent below the baseline.

The pyglet layout classes reserve space in the layout for elements and
call the element’s methods to ensure they are rendered at the
appropriate position.

If the size of an element (any of the advance, ascent, or descent
variables) is modified it is the application’s responsibility to
trigger a reflow of the appropriate area in the affected layouts. This
can be done by forcing a style change over the element’s position.

	
__init__(ascent: int [https://docs.python.org/3/library/functions.html#int], descent: int [https://docs.python.org/3/library/functions.html#int], advance: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Initialize the element.

	Parameters:

	
	ascent (int [https://docs.python.org/3/library/functions.html#int]) – Ascent of the element above the baseline, in pixels.

	descent (int [https://docs.python.org/3/library/functions.html#int]) – Descent of the element below the baseline, in pixels. Typically negative.

	advance (int [https://docs.python.org/3/library/functions.html#int]) – Width of the element, in pixels.

	
abstract place(

	layout: TextLayout,

	x: float [https://docs.python.org/3/library/functions.html#float],

	y: float [https://docs.python.org/3/library/functions.html#float],

	z: float [https://docs.python.org/3/library/functions.html#float],

	line_x: float [https://docs.python.org/3/library/functions.html#float],

	line_y: float [https://docs.python.org/3/library/functions.html#float],

	rotation: float [https://docs.python.org/3/library/functions.html#float],

	visible: bool [https://docs.python.org/3/library/functions.html#bool],

	anchor_x: float [https://docs.python.org/3/library/functions.html#float],

	anchor_y: float [https://docs.python.org/3/library/functions.html#float],

) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract remove(layout: TextLayout) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_anchor(anchor_x: float [https://docs.python.org/3/library/functions.html#float], anchor_y: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_color(color: list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_rotation(rotation: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_translation(x: float [https://docs.python.org/3/library/functions.html#float], y: float [https://docs.python.org/3/library/functions.html#float], z: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_view_translation(translate_x: float [https://docs.python.org/3/library/functions.html#float], translate_y: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
abstract update_visibility(visible: bool [https://docs.python.org/3/library/functions.html#bool]) → None [https://docs.python.org/3/library/constants.html#None]

	
	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
advance: int [https://docs.python.org/3/library/functions.html#int]

	

	
ascent: int [https://docs.python.org/3/library/functions.html#int]

	

	
descent: int [https://docs.python.org/3/library/functions.html#int]

	

	
property position: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	Character position within the document.

Determined by the layout it is in. Will return None if it has not been placed.

	
class UnformattedDocument

	A document having uniform style over all text.

Changes to the style of text within the document affects the entire
document. For convenience, the position parameters of the style
methods may therefore be omitted.

	
__init__(text: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → None [https://docs.python.org/3/library/constants.html#None]

	Create unformatted document with a string.

	
get_element_runs() → ConstRunIterator

	
	Return type:

	ConstRunIterator

	
get_font(

	position: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Font

	Get the font instance used at the given position.

	See:

	get_font_runs

	Parameters:

	
	position (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Character position of document to query.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	Font

	
get_font_runs(

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → ConstRunIterator

	Get a style iterator over the pyglet.font.Font instances used in the document.

The font instances are created on-demand by inspection of the
font_name, font_size, bold and italic style
attributes.

	Parameters:

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Optional resolution to construct fonts at.
:see: load().

	Return type:

	ConstRunIterator

	
get_style(

	attribute: str [https://docs.python.org/3/library/stdtypes.html#str],

	position: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Get an attribute style at the given position.

	Parameters:

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	position (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Character position of document to query.

	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Returns:

	The style set for the attribute at the given position.

	
get_style_runs(

	attribute: str [https://docs.python.org/3/library/stdtypes.html#str],

) → ConstRunIterator

	Get a style iterator over the given style attribute.

	Parameters:

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of style attribute to query.

	Return type:

	ConstRunIterator

	
set_paragraph_style(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Set the style for a range of paragraphs.

This is a convenience method for set_style that aligns the character range to the enclosing paragraph(s).

Dispatches an on_style_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position (exclusive).

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Dictionary giving named style attributes of the paragraphs.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_style(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Set text style of a range between start and end of the document.

Dispatches an on_style_text() event.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position.

	end (int [https://docs.python.org/3/library/functions.html#int]) – Ending character position (exclusive).

	attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Dictionary giving named style attributes of the text.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
STYLE_INDETERMINATE = 'indeterminate'

	The style attribute takes on multiple values in the document.

pyglet.text.layout

Render simple text and formatted documents efficiently.

Three layout classes are provided:

	TextLayout
	The entire document is laid out before it is rendered. The layout will
be grouped with other layouts in the same batch (allowing for efficient
rendering of multiple layouts).

Any change to the layout or document,
and even querying some properties, will cause the entire document
to be laid out again.

	ScrollableTextLayout
	Based on TextLayout().

A separate group is used for layout which crops the contents of the
layout to the layout rectangle. Additionally, the contents of the
layout can be “scrolled” within that rectangle with the view_x and
view_y properties.

	IncrementalTextLayout
	Based on ScrollableTextLayout.

When the layout or document are modified, only the affected regions
are laid out again. This permits efficient interactive editing and
styling of text.

Only the visible portion of the layout is actually rendered; as the
viewport is scrolled additional sections are rendered and discarded as
required. This permits efficient viewing and editing of large documents.

Additionally, this class provides methods for locating the position of a
caret in the document, and for displaying interactive text selections.

All three layout classes can be used with either UnformattedDocument or
FormattedDocument, and can be either single-line or multiline. The
combinations of these options effectively provides 12 different text display
possibilities.

Style attributes

The following character style attribute names are recognised by the layout
classes. Data types and units are as specified.

Where an attribute is marked “as a distance” the value is assumed to be
in pixels if given as an int or float, otherwise a string of the form
"0u" is required, where 0 is the distance and u is the unit; one
of "px" (pixels), "pt" (points), "pc" (picas), "cm"
(centimeters), "mm" (millimeters) or "in" (inches). For example,
"14pt" is the distance covering 14 points, which at the default DPI of 96
is 18 pixels.

	font_name
	Font family name, as given to pyglet.font.load().

	font_size
	Font size, in points.

	bold
	Boolean.

	italic
	Boolean.

	underline
	4-tuple of ints in range (0, 255) giving RGBA underline color, or None
(default) for no underline.

	kerning
	Additional space to insert between glyphs, as a distance. Defaults to 0.

	baseline
	Offset of glyph baseline from line baseline, as a distance. Positive
values give a superscript, negative values give a subscript. Defaults to
0.

	color
	4-tuple of ints in range (0, 255) giving RGBA text color

	background_color
	4-tuple of ints in range (0, 255) giving RGBA text background color; or
None for no background fill.

The following paragraph style attribute names are recognised. Note
that paragraph styles are handled no differently from character styles by the
document: it is the application’s responsibility to set the style over an
entire paragraph, otherwise results are undefined.

	align
	left (default), center or right.

	indent
	Additional horizontal space to insert before the first glyph of the
first line of a paragraph, as a distance.

	leading
	Additional space to insert between consecutive lines within a paragraph,
as a distance. Defaults to 0.

	line_spacing
	Distance between consecutive baselines in a paragraph, as a distance.
Defaults to None, which automatically calculates the tightest line
spacing for each line based on the font ascent and descent.

	margin_left
	Left paragraph margin, as a distance.

	margin_right
	Right paragraph margin, as a distance.

	margin_top
	Margin above paragraph, as a distance.

	margin_bottom
	Margin below paragraph, as a distance. Adjacent margins do not collapse.

	tab_stops
	List of horizontal tab stops, as distances, measured from the left edge of
the text layout. Defaults to the empty list. When the tab stops
are exhausted, they implicitly continue at 50 pixel intervals.

	wrap
	char, word, True (default) or False. The boundaries at which to
wrap text to prevent it overflowing a line. With char, the line
wraps anywhere in the text; with word or True, the line wraps at
appropriate boundaries between words; with False the line does not wrap,
and may overflow the layout width.

Other attributes can be used to store additional style information within the
document; they will be ignored by the built-in text classes.

	
class IncrementalTextDecorationGroup

	
	
scissor_area: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = (0, 0, 0, 0)

	

	
class IncrementalTextLayout

	Displayed text suitable for interactive editing and/or scrolling large documents.

Unlike TextLayout() and
ScrollableTextLayout, this class generates
vertex lists only for lines of text that are visible. As the document is
scrolled, vertex lists are deleted and created as appropriate to keep
video memory usage to a minimum and improve rendering speed.

Changes to the document are quickly reflected in this layout, as only the
affected line(s) are reflowed. Use begin_update() and
end_update() to
further reduce the amount of processing required.

The layout can also display a text selection (text with a different
background color). The Caret class implements
a visible text cursor and provides event handlers for scrolling, selecting and
editing text in an incremental text layout.

	Class Variables:

	
	group_class (ClassVar[type[IncrementalTextLayoutGroup]]) – Default group used to set the state for all glyphs.

	decoration_class (ClassVar[type[IncrementalTextDecorationGroup]]) – Default group used to set the state for all decorations including background colors and
underlines.

	
__init__(

	document: AbstractDocument,

	x: float [https://docs.python.org/3/library/functions.html#float] = 0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0,

	width: int [https://docs.python.org/3/library/functions.html#int] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'bottom',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

	wrap_lines: bool [https://docs.python.org/3/library/functions.html#bool] = True,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a text layout.

	Parameters:

	
	document (AbstractDocument) – Document to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int]) – Width of the layout in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int]) – Height of the layout in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate.

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate.

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A positive amount
will be a clockwise rotation, negative values will result in
counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, newline and paragraph characters are ignored, and
text is not word-wrapped.
If True, text is wrapped only if the wrap_lines is True.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Font resolution; defaults to 96.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add this layout to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional Group to parent all internal Groups that this text
layout uses. Note that layouts with the same Groups will
be rendered simultaneously in a Batch.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs in the layout.

	wrap_lines (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and multiline is True, the text is word-wrapped using the specified width.

	init_document – If True the document will be initialized. If subclassing then
you may want to avoid duplicate initializations by changing to False.

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Deletes all vertices and boxes associated with the layout.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
ensure_line_visible(line_idx: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Adjust view_y so that the line with the given index is visible.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
ensure_x_visible(x: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	Adjust view_x so that the given X coordinate is visible.

The X coordinate is given relative to the current view_x.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_line_count() → int [https://docs.python.org/3/library/functions.html#int]

	Get the number of lines in the text layout.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_line_from_point(x: float [https://docs.python.org/3/library/functions.html#float], y: float [https://docs.python.org/3/library/functions.html#float]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the closest line index to a point.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_line_from_position(position: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the line index of a character position in the document.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_point_from_line(line_idx: int [https://docs.python.org/3/library/functions.html#int]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Get the X, Y coordinates of a line index.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
get_point_from_position(

	position: int [https://docs.python.org/3/library/functions.html#int],

	line_idx: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Get the X, Y coordinates of a character position in the document.

The position that ends a line has an ambiguous point: it can be either
the end of the line, or the beginning of the next line. You may
optionally specify a line index to disambiguate the case.

The resulting Y coordinate gives the baseline of the line.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
get_position_from_line(line_idx: int [https://docs.python.org/3/library/functions.html#int]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the first document character position of a given line index.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_position_from_point(x: float [https://docs.python.org/3/library/functions.html#float], y: float [https://docs.python.org/3/library/functions.html#float]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the closest document position to a point.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
get_position_on_line(line_idx: int [https://docs.python.org/3/library/functions.html#int], x: float [https://docs.python.org/3/library/functions.html#float]) → int [https://docs.python.org/3/library/functions.html#int]

	Get the closest document position for a given line index and X coordinate.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
on_delete_text(start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_delete_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_insert_text(start: int [https://docs.python.org/3/library/functions.html#int], text: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_insert_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_layout_update() → None [https://docs.python.org/3/library/constants.html#None]

	Some or all of the layout text was reflowed.

Text reflow is caused by document edits or changes to the layout’s
size. Changes to the layout’s position or active selection, and
certain document edits such as text color, do not cause a reflow.

Handle this event to update the position of a graphical element
that depends on the laid out position of a glyph or line.

	Event:

	

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_style_text(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_style_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_selection(start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the text selection range.

If start equals end no selection will be visible.

	Parameters:

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – Starting character position of selection.

	end (int [https://docs.python.org/3/library/functions.html#int]) – End of selection, exclusive.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']

	Horizontal anchor alignment.

This property determines the meaning of the x coordinate.

The following values are supported:

	"left" (default)
	The X coordinate gives the position of the left edge of the layout.

	"center"
	The X coordinate gives the position of the center of the layout.

	"right"
	The X coordinate gives the position of the right edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the width of the layout is taken to be width if multiline
is True and wrap_lines is True, otherwise content_width.

	
property anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']

	Vertical anchor alignment.

This property determines the meaning of the y coordinate.

The following values are supported:

	"top"
	The Y coordinate gives the position of the top edge of the layout.

	"center"
	The Y coordinate gives the position of the center of the layout.

	"baseline"
	The Y coordinate gives the position of the baseline of the first
line of text in the layout.

	"bottom" (default)
	The Y coordinate gives the position of the bottom edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the height of the layout is taken to be the smallest of
height and content_height.

See also content_valign.

	
event_types: list = ['on_layout_update', 'on_translation_update']

	

	
property height: int [https://docs.python.org/3/library/functions.html#int]

	The defined maximum height of the layout in pixels, or None

When height is not None, it affects the positioning of the
text when anchor_y and
content_valign are
used.

	
lines: list[_Line]

	

	
property multiline: bool [https://docs.python.org/3/library/functions.html#bool]

	Set if multiline layout is enabled.

If multiline is False, newline and paragraph characters are ignored and
text is not word-wrapped.
If True, the text is word-wrapped only if the wrap_lines is True.

	
property position: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	The (X, Y, Z) coordinates of the layout, as a tuple.

See also anchor_x,
and anchor_y.

	
property rotation: float [https://docs.python.org/3/library/functions.html#float]

	Rotation will always be 0 as incremental layouts cannot be rotated.

	Raises:

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – Rotating IncrementalTextLayout’s is not supported.

	
property selection_background_color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Background color of active selection.

The color is an RGBA tuple with components in range [0, 255].

	
property selection_color: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Text color of active selection.

The color is an RGBA tuple with components in range [0, 255].

	
property selection_end: int [https://docs.python.org/3/library/functions.html#int]

	End position of the active selection (exclusive).

	See:

	py:meth:~pyglet.text.layout.IncrementalTextLayout.set_selection

	
property selection_start: int [https://docs.python.org/3/library/functions.html#int]

	Starting position of the active selection.

	See:

	py:meth:~pyglet.text.layout.IncrementalTextLayout.set_selection

	
property view_x: int [https://docs.python.org/3/library/functions.html#int]

	Horizontal scroll offset.

The initial value is 0, and the left edge of the text will touch the left
side of the layout bounds. A positive value causes the text to “scroll”
to the right. Values are automatically clipped into the range
[0, content_width - width]

	
property view_y: int [https://docs.python.org/3/library/functions.html#int]

	Vertical scroll offset.

The initial value is 0, and the top of the text will touch the top of the
layout bounds (unless the content height is less than the layout height,
in which case content_valign is used).

A negative value causes the text to “scroll” upwards. Values outside of
the range [height - content_height, 0] are automatically clipped in
range.

	
property width: int [https://docs.python.org/3/library/functions.html#int]

	The defined maximum width of the layout in pixels, or None

If multiline and wrap_lines is True, the width defines where the
text will be wrapped. If multiline is False or wrap_lines is False,
this property has no effect.

	
property x: float [https://docs.python.org/3/library/functions.html#float]

	X coordinate of the layout.

See also anchor_x.

	
property y: float [https://docs.python.org/3/library/functions.html#float]

	Y coordinate of the layout.

See also anchor_y.

	
property z: float [https://docs.python.org/3/library/functions.html#float]

	Z coordinate of the layout.

	
class IncrementalTextLayoutGroup

	
	
scissor_area: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = (0, 0, 0, 0)

	

	
class ScrollableTextDecorationGroup

	Create a text decoration rendering group.

The group is created internally when a Label
is created; applications usually do not need to explicitly create it.

	
__init__(

	program: ShaderProgram,

	order: int [https://docs.python.org/3/library/functions.html#int] = 0,

	parent: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
set_state() → None [https://docs.python.org/3/library/constants.html#None]

	Apply the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
unset_state() → None [https://docs.python.org/3/library/constants.html#None]

	Repeal the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
scissor_area: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = (0, 0, 0, 0)

	

	
class ScrollableTextLayout

	Display text in a scrollable viewport.

This class does not display a scrollbar or handle scroll events; it merely
clips the text that would be drawn in TextLayout()
to the bounds of the layout given by x, y, width and height;
and offsets the text by a scroll offset.

Use view_x and view_y to scroll the text within the viewport.

	Class Variables:

	
	group_class (ClassVar[type[ScrollableTextLayoutGroup]]) – Default group used to set the state for all glyphs.

	decoration_class (ClassVar[type[ScrollableTextDecorationGroup]]) – Default group used to set the state for all decorations including background colors and underlines.

	
__init__(

	document: AbstractDocument,

	x: float [https://docs.python.org/3/library/functions.html#float] = 0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0,

	width: int [https://docs.python.org/3/library/functions.html#int] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'bottom',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

	wrap_lines: bool [https://docs.python.org/3/library/functions.html#bool] = True,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a text layout.

	Parameters:

	
	document (AbstractDocument) – Document to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int]) – Width of the layout in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int]) – Height of the layout in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate.

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate.

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A positive amount
will be a clockwise rotation, negative values will result in
counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, newline and paragraph characters are ignored, and
text is not word-wrapped.
If True, text is wrapped only if the wrap_lines is True.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Font resolution; defaults to 96.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add this layout to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional Group to parent all internal Groups that this text
layout uses. Note that layouts with the same Groups will
be rendered simultaneously in a Batch.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs in the layout.

	wrap_lines (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and multiline is True, the text is word-wrapped using the specified width.

	init_document – If True the document will be initialized. If subclassing then
you may want to avoid duplicate initializations by changing to False.

	
property anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']

	Horizontal anchor alignment.

This property determines the meaning of the x coordinate.

The following values are supported:

	"left" (default)
	The X coordinate gives the position of the left edge of the layout.

	"center"
	The X coordinate gives the position of the center of the layout.

	"right"
	The X coordinate gives the position of the right edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the width of the layout is taken to be width if multiline
is True and wrap_lines is True, otherwise content_width.

	
property anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']

	Vertical anchor alignment.

This property determines the meaning of the y coordinate.

The following values are supported:

	"top"
	The Y coordinate gives the position of the top edge of the layout.

	"center"
	The Y coordinate gives the position of the center of the layout.

	"baseline"
	The Y coordinate gives the position of the baseline of the first
line of text in the layout.

	"bottom" (default)
	The Y coordinate gives the position of the bottom edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the height of the layout is taken to be the smallest of
height and content_height.

See also content_valign.

	
property position: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	The (X, Y, Z) coordinates of the layout, as a tuple.

See also anchor_x,
and anchor_y.

	
property view_x: int [https://docs.python.org/3/library/functions.html#int]

	Horizontal scroll offset.

The initial value is 0, and the left edge of the text will touch the left
side of the layout bounds. A positive value causes the text to “scroll”
to the right. Values are automatically clipped into the range
[0, content_width - width]

	
property view_y: int [https://docs.python.org/3/library/functions.html#int]

	Vertical scroll offset.

The initial value is 0, and the top of the text will touch the top of the
layout bounds (unless the content height is less than the layout height,
in which case content_valign is used).

A negative value causes the text to “scroll” upwards. Values outside of
the range [height - content_height, 0] are automatically clipped in
range.

	
property x: float [https://docs.python.org/3/library/functions.html#float]

	X coordinate of the layout.

See also anchor_x.

	
property y: float [https://docs.python.org/3/library/functions.html#float]

	Y coordinate of the layout.

See also anchor_y.

	
property z: float [https://docs.python.org/3/library/functions.html#float]

	Z coordinate of the layout.

	
class ScrollableTextLayoutGroup

	Default rendering group for ScrollableTextLayout.

The group maintains internal state for specifying the viewable
area, and for scrolling. Because the group has internal state
specific to the text layout, the group is never shared.

	
__init__(

	texture: Texture,

	program: ShaderProgram,

	order: int [https://docs.python.org/3/library/functions.html#int] = 1,

	parent: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
set_state() → None [https://docs.python.org/3/library/constants.html#None]

	Apply the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
unset_state() → None [https://docs.python.org/3/library/constants.html#None]

	Repeal the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
scissor_area: ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = (0, 0, 0, 0)

	

	
class TextDecorationGroup

	Create a text decoration rendering group.

The group is created internally when a Label
is created; applications usually do not need to explicitly create it.

	
__init__(

	program: ShaderProgram,

	order: int [https://docs.python.org/3/library/functions.html#int] = 0,

	parent: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
set_state() → None [https://docs.python.org/3/library/constants.html#None]

	Apply the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
unset_state() → None [https://docs.python.org/3/library/constants.html#None]

	Repeal the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
class TextLayout

	Lay out and display documents.

This class is intended for displaying documents.

Label() and HTMLLabel() provide a convenient interface to this class.

Some properties may cause the document to be recreated rather than updated. Refer to property documentation for
details.

	Class Variables:

	
	group_class (ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][type [https://docs.python.org/3/library/functions.html#type][TextLayoutGroup]]) – Default group used to set the state for all glyphs.

	decoration_class (ClassVar [https://docs.python.org/3/library/typing.html#typing.ClassVar][type [https://docs.python.org/3/library/functions.html#type][TextDecorationGroup]]) – Default group used to set the state for all decorations including background colors and underlines.

	
__init__(

	document: AbstractDocument,

	x: float [https://docs.python.org/3/library/functions.html#float] = 0,

	y: float [https://docs.python.org/3/library/functions.html#float] = 0,

	z: float [https://docs.python.org/3/library/functions.html#float] = 0,

	width: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	height: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None] = None,

	anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right'] = 'left',

	anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline'] = 'bottom',

	rotation: float [https://docs.python.org/3/library/functions.html#float] = 0,

	multiline: bool [https://docs.python.org/3/library/functions.html#bool] = False,

	dpi: float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None] = None,

	batch: Batch | None [https://docs.python.org/3/library/constants.html#None] = None,

	group: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

	program: ShaderProgram | None [https://docs.python.org/3/library/constants.html#None] = None,

	wrap_lines: bool [https://docs.python.org/3/library/functions.html#bool] = True,

	init_document: bool [https://docs.python.org/3/library/functions.html#bool] = True,

) → None [https://docs.python.org/3/library/constants.html#None]

	Create a text layout.

	Parameters:

	
	document (AbstractDocument) – Document to display.

	x (float [https://docs.python.org/3/library/functions.html#float]) – X coordinate of the label.

	y (float [https://docs.python.org/3/library/functions.html#float]) – Y coordinate of the label.

	z (float [https://docs.python.org/3/library/functions.html#float]) – Z coordinate of the label.

	width (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Width of the layout in pixels, or None

	height (int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]) – Height of the layout in pixels, or None

	anchor_x (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']) – Anchor point of the X coordinate.

	anchor_y (Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']) – Anchor point of the Y coordinate.

	rotation (float [https://docs.python.org/3/library/functions.html#float]) – The amount to rotate the label in degrees. A positive amount
will be a clockwise rotation, negative values will result in
counter-clockwise rotation.

	multiline (bool [https://docs.python.org/3/library/functions.html#bool]) – If False, newline and paragraph characters are ignored, and
text is not word-wrapped.
If True, text is wrapped only if the wrap_lines is True.

	dpi (float [https://docs.python.org/3/library/functions.html#float] | None [https://docs.python.org/3/library/constants.html#None]) – Font resolution; defaults to 96.

	batch (Batch | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics batch to add this layout to.

	group (Group | None [https://docs.python.org/3/library/constants.html#None]) – Optional Group to parent all internal Groups that this text
layout uses. Note that layouts with the same Groups will
be rendered simultaneously in a Batch.

	program (ShaderProgram | None [https://docs.python.org/3/library/constants.html#None]) – Optional graphics shader to use. Will affect all glyphs in the layout.

	wrap_lines (bool [https://docs.python.org/3/library/functions.html#bool]) – If True and multiline is True, the text is word-wrapped using the specified width.

	init_document (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the document will be initialized. If subclassing then
you may want to avoid duplicate initializations by changing to False.

	
begin_update() → None [https://docs.python.org/3/library/constants.html#None]

	Indicate that a number of changes to the layout or document are about to occur.

Changes to the layout or document between calls to begin_update and
end_update do not trigger any costly relayout of text. Relayout of
all changes is performed when end_update is called.

Note that between the begin_update and end_update calls, values
such as content_width and content_height are undefined (i.e., they
may or may not be updated to reflect the latest changes).

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
delete() → None [https://docs.python.org/3/library/constants.html#None]

	Deletes all vertices and boxes associated with the layout.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
draw() → None [https://docs.python.org/3/library/constants.html#None]

	Draw this text layout.
:rtype: None [https://docs.python.org/3/library/constants.html#None]

Note

This method performs very badly if a batch was supplied to the constructor.
If you add this layout to a batch, you should ideally use only the batch’s draw method.

Note

If this is not its own batch, InlineElements will not be drawn.

	
end_update() → None [https://docs.python.org/3/library/constants.html#None]

	Perform pending layout changes since begin_update.

See begin_update.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_as_texture(

	min_filter: int [https://docs.python.org/3/library/functions.html#int] = 9728,

	mag_filter: int [https://docs.python.org/3/library/functions.html#int] = 9728,

) → Texture

	Utilizes a Framebuffer to draw the current layout into a texture.

Warning

Usage is recommended only if you understand how texture generation affects your application.
Improper use will cause texture memory leaks and performance degradation.

Note

Does not include InlineElements.

	Return type:

	Texture

	Returns:

	A new texture with the layout drawn into it.

New in version 2.0.11.

	
on_delete_text(start: int [https://docs.python.org/3/library/functions.html#int], end: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_delete_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_insert_text(start: int [https://docs.python.org/3/library/functions.html#int], text: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_insert_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
on_style_text(

	start: int [https://docs.python.org/3/library/functions.html#int],

	end: int [https://docs.python.org/3/library/functions.html#int],

	attributes: dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]],

) → None [https://docs.python.org/3/library/constants.html#None]

	Event handler for AbstractDocument.on_style_text.

The event handler is bound by the text layout; there is no need for
applications to interact with this method.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
property anchor_x: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'right']

	Horizontal anchor alignment.

This property determines the meaning of the x coordinate.

The following values are supported:

	"left" (default)
	The X coordinate gives the position of the left edge of the layout.

	"center"
	The X coordinate gives the position of the center of the layout.

	"right"
	The X coordinate gives the position of the right edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the width of the layout is taken to be width if multiline
is True and wrap_lines is True, otherwise content_width.

	
property anchor_y: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['top', 'bottom', 'center', 'baseline']

	Vertical anchor alignment.

This property determines the meaning of the y coordinate.

The following values are supported:

	"top"
	The Y coordinate gives the position of the top edge of the layout.

	"center"
	The Y coordinate gives the position of the center of the layout.

	"baseline"
	The Y coordinate gives the position of the baseline of the first
line of text in the layout.

	"bottom" (default)
	The Y coordinate gives the position of the bottom edge of the layout.

For the purposes of calculating the position resulting from this
alignment, the height of the layout is taken to be the smallest of
height and content_height.

See also content_valign.

	
property batch: Batch

	The Batch that this Layout is assigned to.

If no Batch is assigned, an internal Batch is created and used.

	
property bottom: float [https://docs.python.org/3/library/functions.html#float]

	The y-coordinate of the bottom side of the layout.

	
property content_height: int [https://docs.python.org/3/library/functions.html#int]

	The calculated height of the text in the layout.

This is the actual height of the text in pixels, not the
user defined height.

	
property content_valign: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['left', 'center', 'top']

	Vertical alignment of content within larger layout box.

This property determines how content is positioned within the layout
box when content_height is less than height.

The following values are supported:

	top (default)
	Content is aligned to the top of the layout box.

	center
	Content is centered vertically within the layout box.

	bottom
	Content is aligned to the bottom of the layout box.

This property has no effect when content_height is greater
than height (in which case the content is aligned to the top) or when
height is None (in which case there is no vertical layout box
dimension).

	
property content_width: int [https://docs.python.org/3/library/functions.html#int]

	Calculated width of the text in the layout.

This is the actual width of the text in pixels, not the
user defined width.
The content width may overflow the layout width if word-wrapping
is not possible.

	
property document: AbstractDocument

	Document to display.

For IncrementalTextLayout it is
far more efficient to modify a document in-place than to replace
the document instance on the layout.

	
property dpi

	Get DPI used by this layout.

Read-only.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
property group: Group | None [https://docs.python.org/3/library/constants.html#None]

	Get the Group specified by the user.

Changing a group will cause the layout to be recreated.

	
property height: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The defined maximum height of the layout in pixels, or None

When height is not None, it affects the positioning of the
text when anchor_y and
content_valign are
used.

	
property left: float [https://docs.python.org/3/library/functions.html#float]

	The x-coordinate of the left side of the layout.

	
property multiline: bool [https://docs.python.org/3/library/functions.html#bool]

	Set if multiline layout is enabled.

If multiline is False, newline and paragraph characters are ignored and
text is not word-wrapped.
If True, the text is word-wrapped only if the wrap_lines is True.

	
property position: tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	The (X, Y, Z) coordinates of the layout, as a tuple.

See also anchor_x,
and anchor_y.

	
property program: ShaderProgram

	The ShaderProgram that is assigned to this Layout.

If set, the shader will impact all Glyphs. InlineElements will not be affected.

	
property right: float [https://docs.python.org/3/library/functions.html#float]

	The x-coordinate of the right side of the layout

	
property rotation: float [https://docs.python.org/3/library/functions.html#float]

	Rotation of the layout in degrees. Rotated based on the anchor of the layout.

Negative values will rotate in reverse.

See anchor_x, and anchor_y.

	
property top: float [https://docs.python.org/3/library/functions.html#float]

	The y-coordinate of the top side of the layout.

	
property visible: bool [https://docs.python.org/3/library/functions.html#bool]

	True if the layout will be visible when drawn.

	
property width: int [https://docs.python.org/3/library/functions.html#int] | None [https://docs.python.org/3/library/constants.html#None]

	The defined maximum width of the layout in pixels, or None

If multiline and wrap_lines is True, the width defines where the
text will be wrapped. If multiline is False or wrap_lines is False,
this property has no effect.

	
property x: float [https://docs.python.org/3/library/functions.html#float]

	X coordinate of the layout.

See also anchor_x.

	
property y: float [https://docs.python.org/3/library/functions.html#float]

	Y coordinate of the layout.

See also anchor_y.

	
property z: float [https://docs.python.org/3/library/functions.html#float]

	Z coordinate of the layout.

	
class TextLayoutGroup

	Create a text layout rendering group.

The group is created internally when a Label
is created; applications usually do not need to explicitly create it.

	
__init__(

	texture: Texture,

	program: ShaderProgram,

	order: int [https://docs.python.org/3/library/functions.html#int] = 1,

	parent: Group | None [https://docs.python.org/3/library/constants.html#None] = None,

) → None [https://docs.python.org/3/library/constants.html#None]

	

	
set_state() → None [https://docs.python.org/3/library/constants.html#None]

	Apply the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
unset_state() → None [https://docs.python.org/3/library/constants.html#None]

	Repeal the OpenGL state change.

The default implementation does nothing.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
get_default_decoration_shader() → ShaderProgram

	The default shader for underline and background decoration effects in the layout.

	Return type:

	ShaderProgram

	
get_default_image_layout_shader() → ShaderProgram

	The default shader used for an InlineElement image. Used for HTML Labels that insert images via tag.

	Return type:

	ShaderProgram

	
get_default_layout_shader() → ShaderProgram

	The default shader used for all glyphs in the layout.

	Return type:

	ShaderProgram

pyglet.window

Submodules

	pyglet.window.key

	pyglet.window.mouse

Details

Windowing and user-interface events.

This module allows applications to create and display windows with an
OpenGL context. Windows can be created with a variety of border styles
or set fullscreen.

You can register event handlers for keyboard, mouse and window events.
For games and kiosks you can also restrict the input to your windows,
for example disabling users from switching away from the application
with certain key combinations or capturing and hiding the mouse.

Getting started

Call the Window constructor to create a new window:

from pyglet.window import Window
win = Window(width=960, height=540)

Attach your own event handlers:

@win.event
def on_key_press(symbol, modifiers):
 # ... handle this event ...

Place drawing code for the window within the Window.on_draw event handler:

@win.event
def on_draw():
 # ... drawing code ...

Call pyglet.app.run to enter the main event loop (by default, this
returns when all open windows are closed):

from pyglet import app
app.run()

Creating a game window

Use set_exclusive_mouse() to hide the mouse
cursor and receive relative mouse movement events. Specify fullscreen=True
as a keyword argument to the Window constructor to
render to the entire screen rather than opening a window:

win = Window(fullscreen=True)
win.set_exclusive_mouse()

Working with multiple screens

By default, fullscreen windows are opened on the primary display (typically
set by the user in their operating system settings). You can retrieve a list
of attached screens and select one manually if you prefer. This is useful for
opening a fullscreen window on each screen:

display = pyglet.display.get_display()
screens = display.get_screens()
windows = []
for screen in screens:
 windows.append(window.Window(fullscreen=True, screen=screen))

Specifying a screen has no effect if the window is not fullscreen.

Specifying the OpenGL context properties

Each window has its own context which is created when the window is created.
You can specify the properties of the context before it is created
by creating a “template” configuration:

from pyglet import gl
Create template config
config = gl.Config()
config.stencil_size = 8
config.aux_buffers = 4
Create a window using this config
win = window.Window(config=config)

To determine if a given configuration is supported, query the screen (see
above, “Working with multiple screens”):

configs = screen.get_matching_configs(config)
if not configs:
 # ... config is not supported
else:
 win = window.Window(config=configs[0])

Classes

	
class Window

	Bases: EventDispatcher

Platform-independent application window.

A window is a “heavyweight” object occupying operating system resources.
The “client” or “content” area of a window is filled entirely with
an OpenGL viewport. Applications have no access to operating system
widgets or controls; all rendering must be done via OpenGL.

Windows may appear as floating regions or can be set to fill an entire
screen (fullscreen). When floating, windows may appear borderless or
decorated with a platform-specific frame (including, for example, the
title bar, minimize and close buttons, resize handles, and so on).

While it is possible to set the location of a window, it is recommended
that applications allow the platform to place it according to local
conventions. This will ensure it is not obscured by other windows,
and appears on an appropriate screen for the user.

To render into a window, you must first call its switch_to()
method to make it the active OpenGL context. If you use only one
window in your application, you can skip this step as it will always
be the active context.

Methods

	
activate()

	Attempt to restore keyboard focus to the window.

Depending on the window manager or operating system, this may not
be successful. For example, on Windows XP an application is not
allowed to “steal” focus from another application. Instead, the
window’s taskbar icon will flash, indicating it requires attention.

	
static clear()

	Clear the window.

This is a convenience method for clearing the color and depth
buffer. The window must be the active context (see
switch_to()).

	
close()

	Close the window.

After closing the window, the GL context will be invalid. The
window instance cannot be reused once closed. To re-use windows,
see set_visible() instead.

The pyglet.app.EventLoop.on_window_close() event is
dispatched by the pyglet.app.event_loop when this method
is called.

	
dispatch_event(*args)

	Dispatch an event to the attached event handlers.

The event is propagated to all registered event handlers
in the stack, starting and the top and going down. If any
registered event handler returns EVENT_HANDLED, no further
handlers down the stack will receive this event.

This method has several possible return values. If any event
hander has returned EVENT_HANDLED, then this method will
also return EVENT_HANDLED. If not, this method will return
EVENT_UNHANDLED. If there were no events registered to
receive this event, False is returned.

	Returns:

	EVENT_HANDLED if any event handler returned EVENT_HANDLED;
EVENT_UNHANDLED if one or more event handlers were invoked
without any of them returning EVENT_HANDLED; False if no
event handlers were registered.

	
dispatch_events()

	Poll the operating system event queue for new events and call
attached event handlers.

This method is provided for legacy applications targeting pyglet 1.0,
and advanced applications that must integrate their event loop
into another framework.

Typical applications should use pyglet.app.run().

	
draw_mouse_cursor()

	Draw the custom mouse cursor.

If the current mouse cursor has drawable set, this method
is called before the buffers are flipped to render it.

There is little need to override this method; instead, subclass
MouseCursor and provide your own
draw() method.

	
flip()

	Swap the OpenGL front and back buffers.

Call this method on a double-buffered window to update the
visible display with the back buffer. Windows are
double-buffered by default unless you turn this feature off.

The contents of the back buffer are undefined after this operation.

The default event_loop automatically
calls this method after the window’s
on_draw() event.

	
get_framebuffer_size()

	Return the size in actual pixels of the Window framebuffer.

When using HiDPI screens, the size of the Window’s framebuffer
can be higher than that of the Window size requested. If you
are performing operations that require knowing the actual number
of pixels in the window, this method should be used instead of
Window.get_size(). For example, setting the Window
projection or setting the glViewport size.

	Return type:

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	Returns:

	The width and height of the Window’s framebuffer, in pixels.

	
get_location()

	Return the current position of the window.

	Return type:

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	Returns:

	The distances of the left and top edges from their respective
edges on the virtual desktop, in pixels.

	
get_pixel_ratio()

	Return the framebuffer/window size ratio.

Some platforms and/or window systems support subpixel scaling,
making the framebuffer size larger than the window size.
Retina screens on OS X and Gnome on Linux are some examples.

On a Retina systems the returned ratio would usually be 2.0 as a
window of size 500 x 500 would have a framebuffer of 1000 x 1000.
Fractional values between 1.0 and 2.0, as well as values above
2.0 may also be encountered.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	The framebuffer/window size ratio

	
get_size() → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Return the current size of the window.

This does not include the windows’ border or title bar.

	Return type:

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	Returns:

	The width and height of the window, in pixels.

	
get_system_mouse_cursor(name)

	Obtain a system mouse cursor.

Use set_mouse_cursor to make the cursor returned by this method
active. The names accepted by this method are the CURSOR_*
constants defined on this class.

	Parameters:

	
	namestr
	Name describing the mouse cursor to return. For example,
CURSOR_WAIT, CURSOR_HELP, etc.

	Return type:

	MouseCursor

	Returns:

	A mouse cursor which can be used with set_mouse_cursor.

	
maximize()

	Maximize the window.

The behaviour of this method is somewhat dependent on the user’s
display setup. On a multi-monitor system, the window may maximize
to either a single screen or the entire virtual desktop.

	
minimize()

	Minimize the window.

	
set_caption(caption)

	Set the window’s caption.

The caption appears in the titlebar of the window, if it has one,
and in the taskbar on Windows and many X11 window managers.

	Parameters:

	
	captionstr or unicode
	The caption to set.

	
set_exclusive_keyboard(exclusive=True)

	Prevent the user from switching away from this window using
keyboard accelerators.

When enabled, this feature disables certain operating-system specific
key combinations such as Alt+Tab (Command+Tab on OS X). This can be
useful in certain kiosk applications, it should be avoided in general
applications or games.

	Parameters:

	
	exclusivebool
	If True, exclusive keyboard is enabled, otherwise it is
disabled.

	
set_exclusive_mouse(exclusive=True)

	Hide the mouse cursor and direct all mouse events to this
window.

When enabled, this feature prevents the mouse leaving the window. It
is useful for certain styles of games that require complete control of
the mouse. The position of the mouse as reported in subsequent events
is meaningless when exclusive mouse is enabled; you should only use
the relative motion parameters dx and dy.

	Parameters:

	
	exclusivebool
	If True, exclusive mouse is enabled, otherwise it is disabled.

	
set_fullscreen(

	fullscreen=True,

	screen=None,

	mode=None,

	width=None,

	height=None,

)

	Toggle to or from fullscreen.

After toggling fullscreen, the GL context should have retained its
state and objects, however the buffers will need to be cleared and
redrawn.

If width and height are specified and fullscreen is True, the
screen may be switched to a different resolution that most closely
matches the given size. If the resolution doesn’t match exactly,
a higher resolution is selected and the window will be centered
within a black border covering the rest of the screen.

	Parameters:

	
	fullscreenbool
	True if the window should be made fullscreen, False if it
should be windowed.

	screenScreen
	If not None and fullscreen is True, the window is moved to the
given screen. The screen must belong to the same display as
the window.

	modeScreenMode
	The screen will be switched to the given mode. The mode must
have been obtained by enumerating Screen.get_modes. If
None, an appropriate mode will be selected from the given
width and height.

	widthint
	Optional width of the window. If unspecified, defaults to the
previous window size when windowed, or the screen size if
fullscreen.

New in version 1.2.

	heightint
	Optional height of the window. If unspecified, defaults to
the previous window size when windowed, or the screen size if
fullscreen.

New in version 1.2.

	
set_icon(*images)

	Set the window icon.

If multiple images are provided, one with an appropriate size
will be selected (if the correct size is not provided, the image
will be scaled).

Useful sizes to provide are 16x16, 32x32, 64x64 (Mac only) and
128x128 (Mac only).

	Parameters:

	
	imagessequence of pyglet.image.AbstractImage
	List of images to use for the window icon.

	
set_location(x, y)

	Set the position of the window.

	Parameters:

	
	xint
	Distance of the left edge of the window from the left edge
of the virtual desktop, in pixels.

	yint
	Distance of the top edge of the window from the top edge of
the virtual desktop, in pixels.

	
set_maximum_size(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the maximum size of the window.

Once set, the user will not be able to resize the window larger
than the given dimensions. There is no way to remove the
maximum size constraint on a window (but you could set it to a large
value).

The behaviour is undefined if the maximum size is set smaller than
the current size of the window.

The window size does not include the border or title bar.

	Parameters:

	
	widthint
	Maximum width of the window, in pixels.

	heightint
	Maximum height of the window, in pixels.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_minimum_size(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Set the minimum size of the window.

Once set, the user will not be able to resize the window smaller
than the given dimensions. There is no way to remove the
minimum size constraint on a window (but you could set it to 0,0).

The behaviour is undefined if the minimum size is set larger than
the current size of the window.

The window size does not include the border or title bar.

	Parameters:

	
	widthint
	Minimum width of the window, in pixels.

	heightint
	Minimum height of the window, in pixels.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_mouse_cursor(cursor=None)

	Change the appearance of the mouse cursor.

The appearance of the mouse cursor is only changed while it is
within this window.

	Parameters:

	
	cursorMouseCursor
	The cursor to set, or None to restore the default cursor.

	
set_mouse_platform_visible(platform_visible=None)

	Set the platform-drawn mouse cursor visibility. This is called
automatically after changing the mouse cursor or exclusive mode.

Applications should not normally need to call this method, see
set_mouse_visible instead.

	Parameters:

	
	platform_visiblebool or None
	If None, sets platform visibility to the required visibility
for the current exclusive mode and cursor type. Otherwise,
a bool value will override and force a visibility.

	
set_mouse_visible(visible=True)

	Show or hide the mouse cursor.

The mouse cursor will only be hidden while it is positioned within
this window. Mouse events will still be processed as usual.

	Parameters:

	
	visiblebool
	If True, the mouse cursor will be visible, otherwise it
will be hidden.

	
set_size(width: int [https://docs.python.org/3/library/functions.html#int], height: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	Resize the window.

The behaviour is undefined if the window is not resizable, or if
it is currently fullscreen.

The window size does not include the border or title bar.

	Parameters:

	
	widthint
	New width of the window, in pixels.

	heightint
	New height of the window, in pixels.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
set_visible(visible: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Show or hide the window.

	Parameters:

	
	visiblebool
	If True, the window will be shown; otherwise it will be
hidden.

	Return type:

	None [https://docs.python.org/3/library/constants.html#None]

	
switch_to()

	Make this window the current OpenGL rendering context.

Only one OpenGL context can be active at a time. This method
sets the current window context as the active one.

In most cases, you should use this method instead of directly
calling pyglet.gl.Context.set_current(). The latter
will not perform platform-specific state management tasks for
you.

Events

	
on_activate()

	The window was activated.

This event can be triggered by clicking on the title bar, bringing
it to the foreground; or by some platform-specific method.

When a window is “active” it has the keyboard focus.

	Event:

	

	
on_close()

	The user attempted to close the window.

This event can be triggered by clicking on the “X” control box in
the window title bar, or by some other platform-dependent manner.

The default handler sets has_exit to True. In pyglet 1.1, if
pyglet.app.event_loop is being used, close is also called,
closing the window immediately.

	Event:

	

	
on_context_lost()

	The window’s GL context was lost.

When the context is lost no more GL methods can be called until it
is recreated. This is a rare event, triggered perhaps by the user
switching to an incompatible video mode. When it occurs, an
application will need to reload all objects (display lists, texture
objects, shaders) as well as restore the GL state.

	Event:

	

	
on_context_state_lost()

	The state of the window’s GL context was lost.

pyglet may sometimes need to recreate the window’s GL context if
the window is moved to another video device, or between fullscreen
or windowed mode. In this case it will try to share the objects
(display lists, texture objects, shaders) between the old and new
contexts. If this is possible, only the current state of the GL
context is lost, and the application should simply restore state.

	Event:

	

	
on_deactivate()

	The window was deactivated.

This event can be triggered by clicking on another application
window. When a window is deactivated it no longer has the
keyboard focus.

	Event:

	

	
on_draw()

	The window contents should be redrawn.

The EventLoop will dispatch this event when the draw
method has been called. The window will already have the
GL context, so there is no need to call switch_to. The window’s
flip method will be called immediately after this event,
so your event handler should not.

You should make no assumptions about the window contents when
this event is triggered; a resize or expose event may have
invalidated the framebuffer since the last time it was drawn.

	Event:

	

	
on_expose()

	A portion of the window needs to be redrawn.

This event is triggered when the window first appears, and any time
the contents of the window is invalidated due to another window
obscuring it.

There is no way to determine which portion of the window needs
redrawing. Note that the use of this method is becoming
increasingly uncommon, as newer window managers composite windows
automatically and keep a backing store of the window contents.

	Event:

	

	
on_file_drop(x, y, paths)

	File(s) were dropped into the window, will return the position of the cursor and
a list of paths to the files that were dropped.

New in version 1.5.1.

	Event:

	

	
on_hide()

	The window was hidden.

This event is triggered when a window is minimised
or hidden by the user.

	Event:

	

	
on_key_press(symbol, modifiers)

	A key on the keyboard was pressed (and held down).

Since pyglet 1.1 the default handler dispatches the on_close()
event if the ESC key is pressed.

	Parameters:

	
	symbolint
	The key symbol pressed.

	modifiersint
	Bitwise combination of the key modifiers active.

	Event:

	

	
on_key_release(symbol, modifiers)

	A key on the keyboard was released.

	Parameters:

	
	symbolint
	The key symbol pressed.

	modifiersint
	Bitwise combination of the key modifiers active.

	Event:

	

	
on_mouse_drag(x, y, dx, dy, buttons, modifiers)

	The mouse was moved with one or more mouse buttons pressed.

This event will continue to be fired even if the mouse leaves
the window, so long as the drag buttons are continuously held down.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	dxint
	Relative X position from the previous mouse position.

	dyint
	Relative Y position from the previous mouse position.

	buttonsint
	Bitwise combination of the mouse buttons currently pressed.

	modifiersint
	Bitwise combination of any keyboard modifiers currently
active.

	Event:

	

	
on_mouse_enter(x, y)

	The mouse was moved into the window.

This event will not be triggered if the mouse is currently being
dragged.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	Event:

	

	
on_mouse_leave(x, y)

	The mouse was moved outside the window.

This event will not be triggered if the mouse is currently being
dragged. Note that the coordinates of the mouse pointer will be
outside the window rectangle.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	Event:

	

	
on_mouse_motion(x, y, dx, dy)

	The mouse was moved with no buttons held down.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	dxint
	Relative X position from the previous mouse position.

	dyint
	Relative Y position from the previous mouse position.

	Event:

	

	
on_mouse_press(x, y, button, modifiers)

	A mouse button was pressed (and held down).

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	buttonint
	The mouse button that was pressed.

	modifiersint
	Bitwise combination of any keyboard modifiers currently
active.

	Event:

	

	
on_mouse_release(x, y, button, modifiers)

	A mouse button was released.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	buttonint
	The mouse button that was released.

	modifiersint
	Bitwise combination of any keyboard modifiers currently
active.

	Event:

	

	
on_mouse_scroll(x, y, scroll_x, scroll_y)

	The mouse wheel was scrolled.

Note that most mice have only a vertical scroll wheel, so
scroll_x is usually 0. An exception to this is the Apple Mighty
Mouse, which has a mouse ball in place of the wheel which allows
both scroll_x and scroll_y movement.

	Parameters:

	
	xint
	Distance in pixels from the left edge of the window.

	yint
	Distance in pixels from the bottom edge of the window.

	scroll_xfloat
	Amount of movement on the horizontal axis.

	scroll_yfloat
	Amount of movement on the vertical axis.

	Event:

	

	
on_move(x, y)

	The window was moved.

	Parameters:

	
	xint
	Distance from the left edge of the screen to the left edge
of the window.

	yint
	Distance from the top edge of the screen to the top edge of
the window. Note that this is one of few methods in pyglet
which use a Y-down coordinate system.

	Event:

	

	
on_refresh(dt)

	The window contents should be redrawn.

The EventLoop will dispatch this event when the draw
method has been called. The window will already have the
GL context, so there is no need to call switch_to. The window’s
flip method will be called immediately after this event, so your
event handler should not.

You should make no assumptions about the window contents when
this event is triggered; a resize or expose event may have
invalidated the framebuffer since the last time it was drawn.

New in version 2.0.

	Event:

	

	
on_resize(width, height)

	The window was resized.

The window will have the GL context when this event is dispatched;
there is no need to call switch_to in this handler.

	Parameters:

	
	widthint
	The new width of the window, in pixels.

	heightint
	The new height of the window, in pixels.

	Event:

	

	
on_show()

	The window was shown.

This event is triggered when a window is restored after being
minimised, hidden, or after being displayed for the first time.

	Event:

	

	
on_text(text)

	The user input some text.

Typically this is called after on_key_press() and before
on_key_release(), but may also be called multiple times if the key
is held down (key repeating); or called without key presses if
another input method was used (e.g., a pen input).

You should always use this method for interpreting text, as the
key symbols often have complex mappings to their unicode
representation which this event takes care of.

	Parameters:

	
	textunicode
	The text entered by the user.

	Event:

	

	
on_text_motion(motion)

	The user moved the text input cursor.

Typically this is called after on_key_press() and before
on_key_release(), but may also be called multiple times if the key
is help down (key repeating).

You should always use this method for moving the text input cursor
(caret), as different platforms have different default keyboard
mappings, and key repeats are handled correctly.

The values that motion can take are defined in
pyglet.window.key:

	MOTION_UP

	MOTION_RIGHT

	MOTION_DOWN

	MOTION_LEFT

	MOTION_NEXT_WORD

	MOTION_PREVIOUS_WORD

	MOTION_BEGINNING_OF_LINE

	MOTION_END_OF_LINE

	MOTION_NEXT_PAGE

	MOTION_PREVIOUS_PAGE

	MOTION_BEGINNING_OF_FILE

	MOTION_END_OF_FILE

	MOTION_BACKSPACE

	MOTION_DELETE

	Parameters:

	
	motionint
	The direction of motion; see remarks.

	Event:

	

	
on_text_motion_select(motion)

	The user moved the text input cursor while extending the
selection.

Typically this is called after on_key_press() and before
on_key_release(), but may also be called multiple times if the key
is help down (key repeating).

You should always use this method for responding to text selection
events rather than the raw on_key_press(), as different platforms
have different default keyboard mappings, and key repeats are
handled correctly.

The values that motion can take are defined in pyglet.window.key:

	MOTION_UP

	MOTION_RIGHT

	MOTION_DOWN

	MOTION_LEFT

	MOTION_NEXT_WORD

	MOTION_PREVIOUS_WORD

	MOTION_BEGINNING_OF_LINE

	MOTION_END_OF_LINE

	MOTION_NEXT_PAGE

	MOTION_PREVIOUS_PAGE

	MOTION_BEGINNING_OF_FILE

	MOTION_END_OF_FILE

	Parameters:

	
	motionint
	The direction of selection motion; see remarks.

	Event:

	

Attributes

	
aspect_ratio

	The aspect ratio of the window. Read-Only.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
caption

	The window caption (title). Read-only.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
config

	A GL config describing the context of this window. Read-only.

	Type:

	pyglet.gl.Config

	
context

	The OpenGL context attached to this window. Read-only.

	Type:

	pyglet.gl.Context

	
display

	The display this window belongs to. Read-only.

	Type:

	Display

	
fullscreen

	True if the window is currently fullscreen. Read-only.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_exit = False

	

	
height

	The height of the window, in pixels. Read-write.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
invalid = True

	

	
projection

	The OpenGL window projection matrix. Read-write.

This matrix is used to transform vertices when using any of the built-in
drawable classes. view is done first, then projection.

The default projection matrix is orthographic (2D),
but a custom pyglet.math.Mat4 instance
can be set. Alternatively, you can supply a flat
tuple of 16 values.

(2D), but can be changed to any 4x4 matrix desired.
See pyglet.math.Mat4.

	Type:

	pyglet.math.Mat4

	
resizeable

	True if the window is resizable. Read-only.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
screen

	The screen this window is fullscreen in. Read-only.

	Type:

	Screen

	
size

	The size of the window. Read-Write.

	Type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
style

	The window style; one of the WINDOW_STYLE_* constants.
Read-only.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
view

	The OpenGL window view matrix. Read-write.

This matrix is used to transform vertices when using any of the built-in
drawable classes. view is done first, then projection.

The default view is an identity matrix, but a custom
pyglet.math.Mat4 instance can be set.
Alternatively, you can supply a flat tuple of 16 values.

	Type:

	pyglet.math.Mat4

	
viewport

	The Window viewport

The Window viewport, expressed as (x, y, width, height).

	Return type:

	(int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])

	Returns:

	The viewport size as a tuple of four ints.

	
visible

	True if the window is currently visible. Read-only.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vsync

	True if buffer flips are synchronised to the screen’s vertical
retrace. Read-only.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
width

	The width of the window, in pixels. Read-write.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

Class attributes: cursor names

	
CURSOR_CROSSHAIR = 'crosshair'

	

	
CURSOR_DEFAULT = None

	

	
CURSOR_HAND = 'hand'

	

	
CURSOR_HELP = 'help'

	

	
CURSOR_NO = 'no'

	

	
CURSOR_SIZE = 'size'

	

	
CURSOR_SIZE_DOWN = 'size_down'

	

	
CURSOR_SIZE_DOWN_LEFT = 'size_down_left'

	

	
CURSOR_SIZE_DOWN_RIGHT = 'size_down_right'

	

	
CURSOR_SIZE_LEFT = 'size_left'

	

	
CURSOR_SIZE_LEFT_RIGHT = 'size_left_right'

	

	
CURSOR_SIZE_RIGHT = 'size_right'

	

	
CURSOR_SIZE_UP = 'size_up'

	

	
CURSOR_SIZE_UP_DOWN = 'size_up_down'

	

	
CURSOR_SIZE_UP_LEFT = 'size_up_left'

	

	
CURSOR_SIZE_UP_RIGHT = 'size_up_right'

	

	
CURSOR_TEXT = 'text'

	

	
CURSOR_WAIT = 'wait'

	

	
CURSOR_WAIT_ARROW = 'wait_arrow'

	

Class attributes: window styles

	
WINDOW_STYLE_BORDERLESS = 'borderless'

	

	
WINDOW_STYLE_DEFAULT = None

	

	
WINDOW_STYLE_DIALOG = 'dialog'

	

	
WINDOW_STYLE_OVERLAY = 'overlay'

	

	
WINDOW_STYLE_TOOL = 'tool'

	

	
WINDOW_STYLE_TRANSPARENT = 'transparent'

	

	
__init__(

	width=None,

	height=None,

	caption=None,

	resizable=False,

	style=None,

	fullscreen=False,

	visible=True,

	vsync=True,

	file_drops=False,

	display=None,

	screen=None,

	config=None,

	context=None,

	mode=None,

)

	Create a window.

All parameters are optional, and reasonable defaults are assumed
where they are not specified.

The display, screen, config and context parameters form
a hierarchy of control: there is no need to specify more than
one of these. For example, if you specify screen the display
will be inferred, and a default config and context will be
created.

config is a special case; it can be a template created by the
user specifying the attributes desired, or it can be a complete
config as returned from Screen.get_matching_configs or similar.

The context will be active as soon as the window is created, as if
switch_to was just called.

	Parameters:

	
	widthint
	Width of the window, in pixels. Defaults to 960, or the
screen width if fullscreen is True.

	heightint
	Height of the window, in pixels. Defaults to 540, or the
screen height if fullscreen is True.

	captionstr or unicode
	Initial caption (title) of the window. Defaults to
sys.argv[0].

	resizablebool
	If True, the window will be resizable. Defaults to False.

	styleint
	One of the WINDOW_STYLE_* constants specifying the
border style of the window.

	fullscreenbool
	If True, the window will cover the entire screen rather
than floating. Defaults to False.

	visiblebool
	Determines if the window is visible immediately after
creation. Defaults to True. Set this to False if you
would like to change attributes of the window before
having it appear to the user.

	vsyncbool
	If True, buffer flips are synchronised to the primary screen’s
vertical retrace, eliminating flicker.

	displayDisplay
	The display device to use. Useful only under X11.

	screenScreen
	The screen to use, if in fullscreen.

	configpyglet.gl.Config
	Either a template from which to create a complete config,
or a complete config.

	contextpyglet.gl.Context
	The context to attach to this window. The context must
not already be attached to another window.

	modeScreenMode
	The screen will be switched to this mode if fullscreen is
True. If None, an appropriate mode is selected to accomodate
width and height.

	
__new__(**kwargs)

	

	
class FPSDisplay

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Display of a window’s framerate.

This is a convenience class to aid in profiling and debugging. Typical
usage is to create an FPSDisplay for each window, and draw the display
at the end of the windows’ on_draw() event handler:

from pyglet.window import Window, FPSDisplay

window = Window()
fps_display = FPSDisplay(window)

@window.event
def on_draw():
 # ... perform ordinary window drawing operations ...

 fps_display.draw()

The style and position of the display can be modified via the Label()
attribute. Different text can be substituted by overriding the
set_fps method. The display can be set to update more or less often
by setting the update_period attribute. Note: setting the update_period
to a value smaller than your Window refresh rate will cause inaccurate readings.

	Ivariables:

	
	labelLabel
	The text label displaying the framerate.

	
__init__(window, color=(127, 127, 127, 127), samples=240)

	

	
draw()

	Draw the label.

	
update()

	Records a new data point at the current time. This method
is called automatically when the window buffer is flipped.

	
update_period = 0.25

	Time in seconds between updates.

	Type:

	float [https://docs.python.org/3/library/functions.html#float]

	
class MouseCursor

	An abstract mouse cursor.

	
draw(x, y)

	Abstract render method.

The cursor should be drawn with the “hot” spot at the given
coordinates. The projection is set to the pyglet default (i.e.,
orthographic in window-space), however no other aspects of the
state can be assumed.

	Parameters:

	
	xint
	X coordinate of the mouse pointer’s hot spot.

	yint
	Y coordinate of the mouse pointer’s hot spot.

	
gl_drawable = True

	Indicates if the cursor is drawn
using OpenGL, or natively.

	
hw_drawable = False

	

	
class DefaultMouseCursor

	Bases: MouseCursor

The default mouse cursor set by the operating system.

	
__init__()

	

	
__new__(**kwargs)

	

	
class ImageMouseCursor

	Bases: MouseCursor

A user-defined mouse cursor created from an image.

Use this class to create your own mouse cursors and assign them
to windows. Cursors can be drawn by OpenGL, or optionally passed
to the OS to render natively. There are no restrictions on cursors
drawn by OpenGL, but natively rendered cursors may have some
platform limitations (such as color depth, or size). In general,
reasonably sized cursors will render correctly

	
__init__(image, hot_x=0, hot_y=0, acceleration=False)

	Create a mouse cursor from an image.

	Parameters:

	
	imagepyglet.image.AbstractImage
	Image to use for the mouse cursor. It must have a
valid texture attribute.

	hot_xint
	X coordinate of the “hot” spot in the image relative to the
image’s anchor. May be clamped to the maximum image width
if acceleration=True.

	hot_yint
	Y coordinate of the “hot” spot in the image, relative to the
image’s anchor. May be clamped to the maximum image height
if acceleration=True.

	accelerationint
	If True, draw the cursor natively instead of usign OpenGL.
The image may be downsampled or color reduced to fit the
platform limitations.

	
draw(x, y)

	Abstract render method.

The cursor should be drawn with the “hot” spot at the given
coordinates. The projection is set to the pyglet default (i.e.,
orthographic in window-space), however no other aspects of the
state can be assumed.

	Parameters:

	
	xint
	X coordinate of the mouse pointer’s hot spot.

	yint
	Y coordinate of the mouse pointer’s hot spot.

Exceptions

	
class MouseCursorException

	The root exception for all mouse cursor-related errors.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class NoSuchConfigException

	An exception indicating the requested configuration is not
available.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class NoSuchDisplayException

	An exception indicating the requested display is not available.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

	
class WindowException

	The root exception for all window-related errors.

	
__init__(*args, **kwargs)

	

	
__new__(**kwargs)

	

pyglet.window.key

Key constants and utilities for pyglet.window.

Usage:

from pyglet.window import Window
from pyglet.window import key

window = Window()

@window.event
def on_key_press(symbol, modifiers):
 # Symbolic names:
 if symbol == key.RETURN:

 # Alphabet keys:
 elif symbol == key.Z:

 # Number keys:
 elif symbol == key._1:

 # Number keypad keys:
 elif symbol == key.NUM_1:

 # Modifiers:
 if modifiers & key.MOD_CTRL:

	
class KeyStateHandler

	Simple handler that tracks the state of keys on the keyboard. If a
key is pressed then this handler holds a True value for it.
If the window loses focus, all keys will be reset to False to avoid a
“sticky” key state.

For example:

>>> win = window.Window
>>> keyboard = key.KeyStateHandler()
>>> win.push_handlers(keyboard)

Hold down the "up" arrow...

>>> keyboard[key.UP]
True
>>> keyboard[key.DOWN]
False

	
__init__()

	

	
modifiers_string(modifiers)

	Return a string describing a set of modifiers.

Example:

>>> modifiers_string(MOD_SHIFT | MOD_CTRL)
'MOD_SHIFT|MOD_CTRL'

	Parameters:

	
	modifiersint
	Bitwise combination of modifier constants.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
motion_string(motion)

	Return a string describing a text motion.

Example:

>>> motion_string(MOTION_NEXT_WORD)
'MOTION_NEXT_WORD'

	Parameters:

	
	motionint
	Text motion constant.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
symbol_string(symbol)

	Return a string describing a key symbol.

Example:

>>> symbol_string(BACKSPACE)
'BACKSPACE'

	Parameters:

	
	symbolint
	Symbolic key constant.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
user_key(scancode)

	Return a key symbol for a key not supported by pyglet.

This can be used to map virtual keys or scancodes from unsupported
keyboard layouts into a machine-specific symbol. The symbol will
be meaningless on any other machine, or under a different keyboard layout.

Applications should use user-keys only when user explicitly binds them
(for example, mapping keys to actions in a game options screen).

Key Constants

Modifier mask constants

	MOD_SHIFT

	MOD_CTRL

	MOD_ALT

	MOD_CAPSLOCK

	MOD_NUMLOCK

	MOD_WINDOWS

	MOD_COMMAND

	MOD_OPTION

	MOD_SCROLLLOCK

	MOD_FUNCTION

	MOD_ACCEL (MOD_CTRL on Windows & Linux, MOD_CMD on OS X)

ASCII commands

	BACKSPACE

	TAB

	LINEFEED

	CLEAR

	RETURN

	ENTER

	PAUSE

	SCROLLLOCK

	SYSREQ

	ESCAPE

	SPACE

Cursor control and motion

	HOME

	LEFT

	UP

	RIGHT

	DOWN

	PAGEUP

	PAGEDOWN

	END

	BEGIN

Misc functions

	DELETE

	SELECT

	PRINT

	EXECUTE

	INSERT

	UNDO

	REDO

	MENU

	FIND

	CANCEL

	HELP

	BREAK

	MODESWITCH

	SCRIPTSWITCH

	FUNCTION

Text motion constants

These are allowed to clash with key constants because they abstract
common text motions from their platform-specific keyboard shortcuts.
See Motion events for more information.

	MOTION_UP

	MOTION_RIGHT

	MOTION_DOWN

	MOTION_LEFT

	MOTION_COPY

	MOTION_PASTE

	MOTION_NEXT_WORD

	MOTION_PREVIOUS_WORD

	MOTION_BEGINNING_OF_LINE

	MOTION_END_OF_LINE

	MOTION_NEXT_PAGE

	MOTION_PREVIOUS_PAGE

	MOTION_BEGINNING_OF_FILE

	MOTION_END_OF_FILE

	MOTION_BACKSPACE

	MOTION_DELETE

Number pad

	NUMLOCK

	NUM_SPACE

	NUM_TAB

	NUM_ENTER

	NUM_F1

	NUM_F2

	NUM_F3

	NUM_F4

	NUM_HOME

	NUM_LEFT

	NUM_UP

	NUM_RIGHT

	NUM_DOWN

	NUM_PRIOR

	NUM_PAGE_UP

	NUM_NEXT

	NUM_PAGE_DOWN

	NUM_END

	NUM_BEGIN

	NUM_INSERT

	NUM_DELETE

	NUM_EQUAL

	NUM_MULTIPLY

	NUM_ADD

	NUM_SEPARATOR

	NUM_SUBTRACT

	NUM_DECIMAL

	NUM_DIVIDE

	NUM_0

	NUM_1

	NUM_2

	NUM_3

	NUM_4

	NUM_5

	NUM_6

	NUM_7

	NUM_8

	NUM_9

Function keys

	F1

	F2

	F3

	F4

	F5

	F6

	F7

	F8

	F9

	F10

	F11

	F12

	F13

	F14

	F15

	F16

	F17

	F18

	F19

	F20

Modifiers

	LSHIFT

	RSHIFT

	LCTRL

	RCTRL

	CAPSLOCK

	LMETA

	RMETA

	LALT

	RALT

	LWINDOWS

	RWINDOWS

	LCOMMAND

	RCOMMAND

	LOPTION

	ROPTION

Latin-1

	SPACE

	EXCLAMATION

	DOUBLEQUOTE

	HASH

	POUND

	DOLLAR

	PERCENT

	AMPERSAND

	APOSTROPHE

	PARENLEFT

	PARENRIGHT

	ASTERISK

	PLUS

	COMMA

	MINUS

	PERIOD

	SLASH

	_0

	_1

	_2

	_3

	_4

	_5

	_6

	_7

	_8

	_9

	COLON

	SEMICOLON

	LESS

	EQUAL

	GREATER

	QUESTION

	AT

	BRACKETLEFT

	BACKSLASH

	BRACKETRIGHT

	ASCIICIRCUM

	UNDERSCORE

	GRAVE

	QUOTELEFT

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

	Z

	BRACELEFT

	BAR

	BRACERIGHT

	ASCIITILDE

pyglet.window.mouse

Mouse constants and utilities for pyglet.window.

	
class MouseStateHandler

	Simple handler that tracks the state of buttons from the mouse. If a
button is pressed then this handler holds a True value for it.
If the window loses focus, all buttons will be reset to False in order
to avoid a “sticky” button state.

For example:

>>> win = window.Window()
>>> mousebuttons = mouse.MouseStateHandler()
>>> win.push_handlers(mousebuttons)

Hold down the "left" button...

>>> mousebuttons[mouse.LEFT]
True
>>> mousebuttons[mouse.RIGHT]
False

	
__init__()

	

	
buttons_string(buttons)

	Return a string describing a set of active mouse buttons.

Example:

>>> buttons_string(LEFT | RIGHT)
'LEFT|RIGHT'

	Parameters:

	
	buttonsint
	Bitwise combination of mouse button constants.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
LEFT

	Constant for the left mouse button.

	
MIDDLE

	Constant for the middle mouse button.

	
MOUSE4

	Constant for the mouse4 button.

	
MOUSE5

	Constant for the mouse5 button.

	
RIGHT

	Constant for the right mouse button.

Related Documentation

	OpenGL API Documentation [https://docs.gl/]

	OpenGL Programming Tutorials [https://learnopengl.com/]

	Python Documentation [https://docs.python.org/]

	ctypes Reference [https://docs.python.org/3/library/ctypes.html]

Projects using pyglet

pyglet is a fairly lightweight library, which makes it ideal to build upon.
Listed here are a few projects that take advantage of pyglet “under the hood”.
If you would like to have your project listed here, let us know!

cocos2d

A framework for building 2D games, demos, and other graphical/interactive
applications (http://python.cocos2d.org).

Cocos2d is an open source software framework. It can be used to build
games, apps and other cross platform GUI based interactive programs.

Arcade

A 2D library for game development focusing on simplicity.
(https://arcade.academy)

Arcade builds on Pyglet with a focus to make creating 2D arcade games
simple and easy for hobbyists and new programmers.

Contributing

Communication

pyglet communication occurs mostly in our
discord server [https://discord.gg/QXyegWe],
and
mailing list [http://groups.google.com/group/pyglet-users].

Issue Tracker

You can use the issue tracker [https://github.com/pyglet/pyglet/issues]
to report any bug or compatibility issue.

We prefer the tracker to address discussions on specific bugs, and address
broader topics of pyglet in the mailing list.

Getting the latest development version

The repository can be found here [https://github.com/pyglet/pyglet];
it hosts the source, documentation, examples, and development tools. You can
get the latest version of the code using:

clone over https
git clone https://github.com/pyglet/pyglet.git

or clone over ssh
git clone git@github.com:pyglet/pyglet.git

Contributing to the source

If you want to contribute to pyglet, we suggest the following:

	Fork the official repository [https://github.com/pyglet/pyglet/fork]

	Apply your changes to your fork

	Submit a pull request [https://github.com/pyglet/pyglet/pulls]
describing the changes you have made

	Alternatively, you can create a patch and submit it to the issue tracker.

Contributing to the documentation

When asking to include your code in the repository, check that you have
addressed its respective documentation, both within the code and the API
documentation. It is very important to all of us that the documentation matches
the latest code and vice-versa.

Consequently, an error in the documentation, either because it is hard to
understand or because it doesn’t match the code, is a bug that deserves to
be reported on a ticket.

A good way to start contributing to a component of pyglet is by its
documentation. When studying the code you are going to work with, also read
the associated docs. If you don’t understand the code with the help of the
docs, it is a sign that the docs should be improved.

Contact

pyglet is developed by many individual volunteers, and there is no central
point of contact. If you have a question about developing with pyglet, or you
wish to contribute, please join the
discord server [https://discord.gg/QXyegWe],
or the
mailing list [http://groups.google.com/group/pyglet-users].

For legal issues, please contact
Alex Holkner.

Development environment

To develop pyglet, you need an environment with at least the following:

	Python 3.8+

	pytest [https://pytest.org]

	Your favorite Python editor or IDE

All requirements should already be located in doc/requirements.txt
and tests/requirements.txt.

pip install -r doc/requirements.txt
pip install -r tests/requirements.txt

To use and test all pyglet functionality you should also have:

	FFmpeg [https://www.ffmpeg.org/download.html]

	Pillow [https://pillow.readthedocs.io]

	coverage [https://coverage.readthedocs.io]

To build packages for distribution you need to install:

	wheel [https://github.com/pypa/wheel/]

It is preferred to create a Python virtual environment to develop in.
This allows you to easily test on all Python versions supported by pyglet,
not pollute your local system with pyglet development dependencies,
and not have your local system interfere with pyglet developement.
All dependencies you install while inside an activated virtual
environment will remain isolated inside that environment.
When you’re finished, you can simply delete it.

This section will show you how to set up and use virtual environments.
If you’re already familiar with this, you can probably skip the rest of
this page.

Linux or Mac OSX

Setting up

Setting up a virtual environment is almost the same for Linux and OS X.
First, use your OS’s package manager (apt, brew, etc) to install the
following dependencies:

	Python 3.8+

To create virtual environments, venv is included in the standard
library since Python 3.3.

Depending on your platform, python may be installed as python or python3.
You may want to check which command runs python 3 on your system:

python --version
python3 --version

For the rest of the guide, use whichever gives you the correct python version on your system.
Some linux distros may install python with version numbers such as
python3.8, so you may need to set up an alias.

Next, we’ll create a virtual environment.
Choose the appropriate command for your system to create a virtual environment:

python -m venv pyglet-venv
python3 -m venv pyglet-venv

Once the virtual environment has been created, the next step is to activate
it. You’ll then install the dependencies, which will be isolated
inside that virtual environment.

Activate the virtual environment

. pyglet-venv/bin/activate

You will see the name of the virtual environment at the start of the
command prompt.

[Optional] Make sure pip is the latest version:

pip install --upgrade pip

Now install dependencies in doc/requirements.txt and
tests/requirements.txt:

pip install -r doc/requirements.txt
pip install -r tests/requirements.txt

Finishing

To get out of the virtual environment run:

deactivate

Windows

Setting up

Make sure you download and install:

	Python 3.8+ from the
official Python site [http://www.python.org/downloads/windows/]

Pip should be installed by default with the latest Python installers.
Make sure that the boxes for installing PIP and adding python to PATH are checked.

When finished installing, open a command prompt.

To create virtual environments, venv is included in the standard library
since Python 3.3.

Next, we’ll create a virtual environment.:

python -m venv pyglet-venv

Once the virtual environment has been created, the next step is to activate
it. You’ll then install the dependencies, which will be isolated
inside that virtual environment.

Activate the virtual environment

. pyglet-venv/bin/activate

You will see the name of the virtual environment at the start of the
command prompt.

[Optional] Make sure pip is the latest version:

pip install --upgrade pip

Now install dependencies in doc/requirements.txt and
tests/requirements.txt:

pip install -r doc/requirements.txt
pip install -r tests/requirements.txt

Finishing

To get out of the virtual environment run:

deactivate

Documentation and Type Hints

The pyglet documentation is written in reStructuredText [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html] (RST), and built with Sphinx [https://sphinx-doc.org].
If you are not familiar with reStructuredText, it is similar to MarkDown but offers more
robust functionality for creating technical documentation. This is the default language
used in Sphinx. Most of the documentation is written in plain ascii text, so you can still
modify or add to it without needing to know much RST syntax.

The documentation can be found as part of the pyglet repository, under the doc
subfolder. The main index is located at pyglet/doc/index.rst, which includes the
main landing page, and defines three toctrees:

	The programming guide

	The API docs

	The development guide

programming guide

The programming guide is made up of many individual .rst files, which are located
in the repository under the pyglet/doc/programming_guide/ folder. All files in this
folder are also defined in the index.rst, in order to includes them in the build process.

API documentation

The API documentation is generated direclty from the source code docstrings by autodoc [https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html],
a plugin extension that is included with Sphinx. The generation itself is mostly automatic,
but declaration files are necessary to instruct Sphinx how and which modules and classes
should be included. Look through the existing files at pyglet/doc/modules/ to get an
idea of what this looks like.

docstring rules

	Google Format with no typing.

	Docstrings are meant primarily for user or general information, not implementation details.

	Hash (#) comments should be used for developers or contributors when needing to provide information to other developers.

	Any methods or functions without a docstring will not appear in the API documentation.

	Documentation will hide private attributes unless otherwise overridden in the rst.

	Parameter descriptions are not required if straight forward enough, unless a clarification is needed.

	If you have to add a parameter description, you must add one for each in that function. (None or All)

	A return description is optional.

	All classes and functions should have a header with at least a one line succinct description.

	
	For class attributes, use Attributes: in the header. Type hints may be specified, as currently they are not picked up automatically.
	
	Required: You will also need to add these :exclude-members: <attribute> in the rst files manually. Otherwise, autodoc will pick it up twice.

	
	Class attributes are generally meant to be used for:
	
	Changing global behavior to the class in some form. (Example: Texture.default_mag_filter)

	Simplifying subclassing for users. (Example: group_class for Sprite)

	Troubleshooting purposes.

	Parameter descriptions should be indented on a new line for clarity.

	Parameter descriptions can have one line of space between each for clarity.

	For class instance attributes, these should be documented with a #: <description> comment.

	
	For class instance attributes you wish to hide from the docs. Either:
	
	Consider making them private (via _name) if it makes sense.

	Mark them with a comment in this format: #: :meta private:

typing rules

	Do not put type information in docstrings, rely on annotations.

	If you are using class annotations, you must have from __future__ import annotations at the top of the module.

	When adding annotations, if a class type is not used in the file, it must be imported only within TYPE_CHECKING

	No need to go overboard, some rules can be set to ignored if there is not yet an adequate way to do it.

	Return types always need to be specified even if None.

example

class Class1():
 """Short description of the class

 This is a good place for a general high level description
 of what the class is, and what it is used for. For example:
 Class1 is used for X and Y, which makes Z possible, etc.
 """

 #: This is the default thing.
 some_default_thing: float = 123.0

 #: :meta private:
 dont_show_me: int = 456

 def __init__(self, name: str, size: float):
 """Constructor description

 Here is where you can describe how to make an instance of the
 class. If any of the arguments need further explaination, that
 detail can be added as necessary. For example:
 You must provide a name and a size, etc. etc.

 Args:
 name: The name of this object.
 size: The size, in centimeters.
 """
 self.name = name
 self.size = size

 #: :This will show in the docs
 self.attribute_one: int = None

 self.attribute_two: str = "hello"

 def set_size(self, centimeters: float) -> None:
 """Simple description + type hints are enough."""
 self.size = centimeters

 def calculate_scaled_size(self, scale: float) -> float:
 """Detailed method description

 You can add more details here.

 Args:
 scale: The argument description.

 Returns:
 Describe what is being returned, if not already clear.
 """
 # This is a developer comment, which is not intended for end users to
 # see. These can be used to explain to future developers why something
 # is implemented a certain way, or any other developer focused notes, etc.
 return self.size * scale

def function_with_pep484_type_annotations(param1: int, param2: str) -> bool:
 """Example function with PEP 484 type annotations.

 Args:
 param1: The first parameter.
 param2: The second parameter.

 Returns:
 When necessary, you can describe the return value in
 more detail. This can be skipped if it's obvious from
 the return type hint.
 """
 ...

documentation tips

Sometimes you may, or may not want certain class attributes to show up in the API
docs. Depending on how and where you put the annotations and/or comments, you can
control what gets picked up during the documentation building. Some examples are
shown below.

The following will show in docs WITHOUT docstring:

class Test:
 blah: int

The following will show in docs WITH docstring:

class Test:
 #: :My description.
 blah: int

The following will NOT show in the docs:

class Test:
 def __init__(self):
 self.blah: int = 0

The following will show in the docs:

class Test:
 def __init__(self):
 #: :This is documented.
 self.blah: int = 0

Developer reference

Developer focused documentation is located in the pyglet/doc/internal/ folder.
This contains various pages about tools that are used with developing pyglet, the
documentation page that you’re reading now, information on unit tests, etc. These
pages are useful for anyone who wants to contribute.

building

Building the documentation locally requires a few dependencies. See Development environment
for more information on how to install them. Once you have Sphinx and it’s dependencies
installed, you can proceed with the build. The first way to build is by using pyglet’s
included make.py utility. This is found in the root of the repository, and includes
some helper functions for common build and distribution related tasks. For docs, execute:

./make.py docs --open

If the build succeeds, the generated static web pages will be in doc/_build/html.

You can also build the documentation by using Sphinx’s Makefile:

cd pyglet/doc
make html # Posix
make.bat html # Windows

auto-generated details

	Date

	2024/05/09 09:26:34

	pyglet version

	2.1.dev2

Testing pyglet

Test Suites

Tests for pyglet are divided into 3 suites.

Unit tests

Unit tests only cover a single unit of code or a combination of a
limited number of units. No resource intensive computations should
be included. These tests should run in limited time without
any user interaction.

Integration tests

Integration tests cover the integration of components of pyglet
into the whole of pyglet and the integration into the supported systems.
Like unit tests these tests do not require user interaction,
but they can take longer to run due to access to system resources.

Interactive tests

Interactive tests require the user to verify whether the test is
successful and in some cases require the user to perform actions
in order for the test to continue. These tests can take a
long time to run.

There are currently 3 types of interactive test cases:

	Tests that can only run in fully interactive mode as they require
the user to perform an action in order for the test to continue.
These tests are decorated with
requires_user_action().

	Tests that can run without user interaction, but that cannot validate
whether they should pass or fail. These tests are decorated with
requires_user_validation().

	Tests that can run without user interaction and that can compare results
to screenshots from a previous run to determine whether they pass or
fail. This is the default type.

Running tests

The pyglet test suite is based on the pytest framework [http://pytest.org].

It is strongly preferred to use a virtual environment to run the tests.
For instructions to set up virtual environments see Development environment.

Make sure of the following when running tests:

1. The virtual environment for the Python version you want to
test is active.
2. You are running tests against currently supported Python versions.

Ideally, you should also test against the minimum supported Python
version (currently 3.8) to make sure your changes
are compatible with all supported Python versions.

To run all tests, execute pytest in the root of the pyglet repository:

pytest

You can also run just a single suite:

pytest tests/unit
pytest tests/integration
pytest tests/interactive

For the interactive test suites, there are some extra command line switches
for pytest:

	--non-interactive: Only run the interactive tests that can only
verify themselves using screenshots. The screenshots are created when
you run the tests in interactive mode, so you will need to run the tests
interactively once, before you can use this option;

	--sanity: Do a sanity check by running as many interactive tests
without user intervention. Not all tests can run without intervention,
so these tests will still be skipped. Mostly useful to quickly check
changes in code. Not all tests perform complete validation.

Writing tests

Annotations

Some control over test execution can be exerted by using annotations in
the form of decorators. One function of annotations is to skip tests
under certain conditions.

General annotations

General test annotations are available in the module tests.annotations.

	
@require_platform(platform)

	Only run the test on the given platform(s), skip on other platforms.

	Parameters:

	platform (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – A list of platform identifiers as returned by
pyglet.options. See also Platform.

	
@skip_platform(platform)

	Skip test on the given platform(s).

	Parameters:

	platform (list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – A list of platform identifiers as returned by
pyglet.options. See also Platform.

	
class Platform

	Predefined lists of identifiers for platforms. For use with
require_platform() and skip_platform(). Combine platforms using +.

	
LINUX = ('linux-compat', 'linux2', 'linux')

	Linux platforms

	
OSX = ('darwin',)

	Mac OS X platforms

	
WINDOWS = ('win32', 'cygwin')

	MS Windows platforms

	
@require_gl_extension(extension)

	Skip the test if the given GL extension is not available.

	Parameters:

	extension (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the extension required.

Suite annotations

This is currently not used.

	
@pytest.mark.unit

	Test belongs to the unit test suite.

	
@pytest.mark.integration

	Test belongs to the integration test suite.

	
@pytest.mark.interactive

	Test belongs to the interactive test suite.

Interactive test annotations

Interactive test cases can be marked with specific pytest marks. Currently
the following marks are used:

	
@pytest.mark.requires_user_action

	Test requires user interaction to run. It needs to be skipped when running in
non-interactive or sanity mode.

	
@pytest.mark.requires_user_validation

	User validation is required to mark the test passed or failed. However the test
can run in sanity mode.

	
@pytest.mark.only_interactive

	For another reason the test can only run in interactive mode.

Making a pyglet release

	Clone pyglet into a new directory

	Make sure it is up to date:

git pull

	Update version string in the following files and commit:

	pyglet/__init__.py

	doc/conf.py

	Tag the current changelist with the version number:

git tag -a v0.0.0 -m "release message"

	Push the changes to the central repo:

git push
git push --tags

	Build the wheels and documentation:

./make.py clean
./make.py dist

	Upload the wheels and zips to PyPI:

twine upload dist/pyglet-x.y.z*

	Start a build of the documentation on https://readthedocs.org/projects/pyglet/builds/

	Draft a new release on Github, using the same version number https://github.com/pyglet/pyglet/releases

	Tell people!

Major version increase

When preparing for a major version you might also want to consider the
following:

	Create a maintenance branch for the major version

	Add a readthedocs configuration for that maintenance branch

	Point the url in setup.py to the maintenance branch documentation

OpenGL Interface Implementation

See OpenGL Interface for details on the publically-visible modules.

See ctypes Wrapper Generation for details on some of these modules are
generated.

ctypes linkage

Most functions link to libGL.so (Linux), opengl32.dll (Windows) or
OpenGL.framework (OS X). pyglet.gl.lib provides some helper types then
imports linker functions for the appropriate platform: one of
pyglet.gl.lib_agl, pyglet.gl.lib_glx, pyglet.gl.lib_wgl.

On any platform, the following steps are taken to link each function during
import:

	Look in the appropriate library (e.g. libGL.so, opengl32.dll,
etc.) using cdll or windll.

	If not found, call wglGetProcAddress or glxGetProcAddress to try to
resolve the function’s address dynamically. On OS X, skip this step.

	On Windows, this will fail if the context hasn’t been created yet. Create
and return a proxy object WGLFunctionProxy which will try the same
resolution again when the object is __call__’d.

The proxy object caches its result so that subsequent calls have only a
single extra function-call overhead.

	If the function is still not found (either during import or proxy call),
the function is replaced with MissingFunction (defined in
pyglet.gl.lib), which raises an exception. The exception message
details the name of the function, and optionally the name of the extension
or OpenGL version it requires.

We currently include all functions and enums from OpenGL 4.6 in separate
modules. gl.g exposes the core api and gl_compat.py exposes the
compatibility profile (no deprecation).

What extensions are included can be found in gengl.py.

To access the linking function, import pyglet.gl.lib and use one of
link_AGL, link_GLX, link_WGL or link_GL. This
is what the generated modules do.

Missing extensions

Missing extensions can be added to the extensions list in gengl.py.

ctypes Wrapper Generation

The following modules in pyglet are entirely (or mostly) generated from one or
more C header files:

	pyglet.gl.gl

	pyglet.gl.gl_compat

	pyglet.gl.agl

	pyglet.gl.glext_abi

	pyglet.gl.glext_nv

	pyglet.gl.glx

	pyglet.gl.glxext_abi

	pyglet.gl.glxext_nv

	pyglet.gl.wgl

	pyglet.gl.wglext_abi

	pyglet.gl.wglext_nv

	pyglet.window.xlib.xlib

	pyglet.window.xlib.xinerama

The wrapping framework is in tools/wraptypes, and pyglet-specialised batch
scripts are tools/genwrappers.py (generates xlib wrappers) and
tools/gengl.py (generates gl wrappers).

Generating GL wrappers (new version)

The new gengl.py script only generates the following modules:

	gl.py: OpenGL 4.6 core profile enums and functions. All deprecated
enums and functions are not included.

	gl_compat.py: OpenGL 4.6 compatibility profile with all enums and
functions all the way back to OpenGL 1.0.

Running the script:

Fetch latest gl.xml from Khronos github and generate new modules
python tools/gengl.py
python tools/gengl.py –source url

Read the local gl.xml version
python tools/gengl.py –source local

The old gengl.py script also handled agl, wgl and glx.
The section below is still present for historical reasons
and the old script is still around in the tools directory.

Generating GL wrappers (old version)

This process needs to be followed when the wraptypes is updated, the header
files are updated (e.g., a new release of the operating system), or the GL
extensions are updated. Each file can only be generated a a specific
platform.

Before beginning, remove the file tools/.gengl.cache if it exists. This
merely caches header files so they don’t need to be repeatedly downloaded (but
you’d prefer to use the most recent uncached copies if you’re reading this,
presumably).

On Linux, generate pyglet.gl.gl, pyglet.gl.glext_abi and
pyglet.gl.glext_nv (the complete user-visible GL
package):

python tools/gengl.py gl glext_abi glext_nv

The header files for pyglet.gl.gl are located in
/usr/include/GL. Ensure your Linux distribution has recent versions
of these files (unfortunately they do not seem to be accessible outside of a
distribution or OS).

The header files for pyglet.glext_abi and pyglet.glext_nv are
downloaded from http://www.opengl.org and http://developer.nvidia.com,
respectively.

On Linux still, generate pyglet.gl.glx, pyglet.gl.glxext_abi and
pyglet.gl.glxext_nv:

python tools/gengl.py glx glxext_abi glxext_nv

The header file for pyglet.gl.glx is in /usr/include/GL, and
is expected to depend on X11 header files from /usr/include/X11.
glext_abi and glext_nv header files are downloaded from the above
websites.

On OS X, generate pyglet.gl.agl:

python tools/gengl.py agl

Watch a movie while you wait – it uses virtually every header file on the
system. Expect to see one syntax error in PictUtils.h line 67, it is
unimportant.

On Windows XP, generate pyglet.gl.wgl, pyglet.gl.wglext_abi and
pyglet.gl.wglext_nv:

python tools/gengl.py wgl wglext_abi wglext_nv

You do not need to have a development environment installed on Windows.
pyglet.gl.wgl is generated from tools/wgl.h, which is a hand-coded
header file containing the prototypes and constants for WGL and its
dependencies. In a real development environment you would find these mostly
in WinGDI.h, but wraptypes is not quite sophisticated enough to parse
Windows system headers (see below for what needs implementing). It is
extremely unlikely this header will ever need to change (excepting a bug fix).

The headers for pyglet.gl.wglext_abi and pyglet.gl.wglext_nv are
downloaded from the same websites as for GL and GLX.

Generated GL wrappers

Each generated file contains a pair of markers # BEGIN GENERATED CONTENT
and # END GENERATED CONTENT which are searched for when replacing the
file. If either marker is missing or corrupt, the file will not be modified.
This allows for custom content around the generated content. Only glx.py
makes use of this, to include some additional enumerators that are not
generated by default.

If a generating process is interrupted (either you get sick of it, or it
crashes), it will leave a partially-complete file written, which will not
include both markers. It is up to you to restore the file or otherwise
reinsert the markers.

Generating Xlib wrappers

On Linux with the Xinerama extension installed (doesn’t have to be in use,
just available), run:

python tools/genwrappers.py

This generates pyglet.window.xlib.xlib and
pyglet.window.xlib.xinerama.

Note that this process, as well as the generated modules, depend on
pyglet.gl.glx. So, you should always run this after the above GL
generation.

wraptypes

wraptypes is a general utility for creating ctypes wrappers from C header
files. The front-end is tools/wraptypes/wrap.py, for usage:

python tools/wraptypes/wrap.py -h

There are three components to wraptypes:

	preprocessor.py
	Interprets preprocessor declarations and converts the source header files
into a list of tokens.

	cparser.py
	Parses the preprocessed tokens for type and function declarations and
calls handle_ methods on the class CParser in a similar manner to a
SAX parser.

	ctypesparser.py
	Interprets C declarations and types from CParser and creates corresponding
ctypes declarations, calling handle_ methods on the class
CtypesParser.

The front-end wrap.py provides a simple subclass of CtypesParser,
CtypesWrapper, which writes the ctypes declarations found to a file in a
format that can be imported as a module.

Parser Modifications

The parsers are built upon a modified version of PLY [http://www.dabeaz.com/ply/], a Python
implementation of lex and yacc. The modified source is included in
the wraptypes directory. The modifications are:

	Grammar is abstracted out of Parser, so multiple grammars can easily be
defined in the same module.

	Tokens and symbols keep track of their filename as well as line number.

	Lexer state can be pushed onto a stack.

The first time the parsers are run (or after they are modified), PLY creates
pptab.py and parsetab.py in the current directory. These are
the generated state machines, which can take a few seconds to generate.
The file parser.out is created if debugging is enabled, and contains the
parser description (of the last parser that was generated), which is essential
for debugging.

Preprocessor

The grammar and parser are defined in preprocessor.py.

There is only one lexer state. Each token has a type which is a string (e.g.
'CHARACTER_CONSTANT') and a value. Token values, when read directly from
the source file are only ever strings. When tokens are written to the output
list they sometimes have tuple values (for example, a PP_DEFINE token on
output).

Two lexer classes are defined: PreprocessorLexer, which reads a stack of
files (actually strings) as input, and TokenListLexer, which reads from a
list of already-parsed tokens (used for parsing expressions).

The preprocessing entry-point is the PreprocessorParser class. This
creates a PreprocessorLexer and its grammar during construction. The
system include path includes the GCC search path by default but can be
modified by altering the include_path and framework_path lists. The
system_headers dict allows header files to be implied on the search path
that don’t exist. For example, by setting:

system_headers['stdlib.h'] = '''#ifndef STDLIB_H
#define STDLIB_H

/* ... */
#endif
'''

you can insert your own custom header in place of the one on the filesystem.
This is useful when parsing headers from network locations.

Parsing begins when parse is called. Specify one or both of a filename
and a string of data. If debug kwarg is True, syntax errors dump the
parser state instead of just the line number where they occurred.

The production rules specify the actions; these are implemented in
PreprocessorGrammar. The actions call methods on PreprocessorParser,
such as:

	include(self, header), to push another file onto the lexer.

	include_system(self, header), to search the system path for a file to
push onto the lexer

	error(self, message, filename, line), to signal a parse error. Not
all syntax errors get this far, due to limitations in the parser. A parse
error at EOF will just print to stderr.

	write(self, tokens), to write tokens to the output list. This is
the default action when no preprocessing declaratives are being parsed.

The parser has a stack of ExecutionState, which specifies whether the
current tokens being parsed are ignored or not (tokens are ignored in an
#if that evaluates to 0). This is a little more complicated than just a
boolean flag: the parser must also ignore #elif conditions that can have no
effect. The enable_declaratives and enable_elif_conditionals return
True if the top-most ExecutionState allows declaratives and #elif
conditionals to be parsed, respecitively. The execution state stack is
modified with the condition_* methods.

PreprocessorParser has a PreprocessorNamespace which keeps track of
the currently defined macros. You can create and specify your own namespace,
or use one that is created by default. The default namespace includes GCC
platform macros needed for parsing system headers, and some of the STDC
macros.

Macros are expanded when tokens are written to the output list, and when
conditional expressions are parsed.
PreprocessorNamespace.apply_macros(tokens) takes care of this, replacing
function parameters, variable arguments, macro objects and (mostly) avoiding
infinite recursion. It does not yet handle the # and ## operators,
which are needed to parse the Windows system headers.

The process for evaluating a conditional (#if or #elif) is:

	Tokens between PP_IF or PP_ELIF and NEWLINE are expanded
by apply_macros.

	The resulting list of tokens is used to construct a TokenListLexer.

	This lexer is used as input to a ConstantExpressionParser. This parser
uses the ConstantExpressionGrammar, which builds up an AST of
ExpressionNode objects.

	parse is called on the ConstantExpressionParser, which returns the
resulting top-level ExpressionNode, or None if there was a syntax
error.

	The evaluate method of the ExpressionNode is called with the
preprocessor’s namespace as the evaluation context. This allows the
expression nodes to resolve defined operators.

	The result of evaluate is always an int; non-zero values are treated as
True.

Because pyglet requires special knowledge of the preprocessor declaratives
that were encountered in the source, these are encoded as pseudo-tokens within
the output token list. For example, after a #ifndef is evaluated, it
is written to the token list as a PP_IFNDEF token.

#define is handled specially. After applying it to the namespace, it is
parsed as an expression immediately. This is allowed (and often expected) to
fail. If it does not fail, a PP_DEFINE_CONSTANT token is created, and the
value is the result of evaluatin the expression. Otherwise, a PP_DEFINE
token is created, and the value is the string concatenation of the tokens
defined. Special handling of parseable expressions makes it simple to later
parse constants defined as, for example:

#define RED_SHIFT 8
#define RED_MASK (0x0f << RED_SHIFT)

The preprocessor can be tested/debugged by running preprocessor.py
stand-alone with a header file as the sole argument. The resulting token list
will be written to stdout.

CParser

The lexer for CParser, CLexer, takes as input a list of tokens output
from the preprocessor. The special preprocessor tokens such as PP_DEFINE
are intercepted here and handled immediately; hence they can appear anywhere
in the source header file without causing problems with the parser. At this
point IDENTIFIER tokens which are found to be the name of a defined type
(the set of defined types is updated continuously during parsing) are
converted to TYPE_NAME tokens.

The entry-point to parsing C source is the CParser class. This creates a
preprocessor in its constructor, and defines some default types such as
wchar_t and __int64_t. These can be disabled with kwargs.

Preprocessing can be quite time-consuming, especially on OS X where thousands
of #include declaratives are processed when Carbon is parsed. To minimise
the time required to parse similar (or the same, while debugging) header
files, the token list from preprocessing is cached and reused where possible.

This is handled by CPreprocessorParser, which overrides push_file to
check with CParser if the desired file is cached. The cache is checked
against the file’s modification timestamp as well as a “memento” that
describes the currently defined tokens. This is intended to avoid using a
cached file that would otherwise be parsed differently due to the defined
macros. It is by no means perfect; for example, it won’t pick up on a macro
that has been defined differently. It seems to work well enough for the
header files pyglet requires.

The header cache is saved and loaded automatically in the working directory
as .header.cache. The cache should be deleted if you make changes to the
preprocessor, or are experiencing cache errors (these are usually accompanied
by a “what-the?” exclamation from the user).

The actions in the grammar construct parts of a “C object model” and call
methods on CParser. The C object model is not at all complete, containing
only what pyglet (and any other ctypes-wrapping application) requires. The
classes in the object model are:

	Declaration
	A single declaration occuring outside of a function body. This includes
type declarations, function declarations and variable declarations. The
attributes are declarator (see below), type (a Type object) and
storage (for example, ‘typedef’, ‘const’, ‘static’, ‘extern’, etc).

	Declarator
	A declarator is a thing being declared. Declarators have an
identifier (the name of it, None if the declarator is abstract, as in
some function parameter declarations), an optional initializer
(currently ignored), an optional linked-list of array (giving the
dimensions of the array) and an optional list of parameters (if the
declarator is a function).

	Pointer
	This is a type of declarator that is dereferenced via pointer to
another declarator.

	Array
	Array has size (an int, its dimension, or None if unsized) and a pointer
array to the next array dimension, if any.

	Parameter
	A function parameter consisting of a type (Type object), storage
and declarator.

	Type
	Type has a list of qualifiers (e.g. ‘const’, ‘volatile’, etc) and
specifiers (the meaty bit).

	TypeSpecifier
	A base TypeSpecifier is just a string, such as 'int' or 'Foo' or
'unsigned'. Note that types can have multiple TypeSpecifiers; not
all combinations are valid.

	StructTypeSpecifier
	This is the specifier for a struct or union (if is_union is True)
type. tag gives the optional foo in struct foo and
declarations is the meat (an empty list for an opaque or unspecified
struct).

	EnumSpecifier
	This is the specifier for an enum type. tag gives the optional
foo in enum foo and enumerators is the list of Enumerator
objects (an empty list for an unspecified enum).

	Enumerator
	Enumerators exist only within EnumSpecifier. Contains name and
expression, an ExpressionNode object.

The ExpressionNode object hierarchy is similar to that used in the
preprocessor, but more fully-featured, and using a different
EvaluationContext which can evaluate identifiers and the sizeof
operator (currently it actually just returns 0 for both).

Methods are called on CParser as declarations and preprocessor declaratives
are parsed. The are mostly self explanatory. For example:

	handle_ifndef(self, name, filename, lineno)
	An #ifndef was encountered testing the macro name in file
filename at line lineno.

	handle_declaration(self, declaration, filename, lineno)
	declaration is an instance of Declaration.

These methods should be overridden by a subclass to provide functionality.
The DebugCParser does this and prints out the arguments to each
handle_ method.

The CParser can be tested in isolation by running it stand-alone with the
filename of a header as the sole argument. A DebugCParser will be
constructed and used to parse the header.

CtypesParser

CtypesParser is implemented in ctypesparser.py. It is a subclass of
CParser and implements the handle_ methods to provide a more
ctypes-friendly interpretation of the declarations.

To use, subclass and override the methods:

	handle_ctypes_constant(self, name, value, filename, lineno)
	An integer or float constant (in a #define).

	handle_ctypes_type_definition(self, name, ctype, filename, lineno)
	A typedef declaration. See below for type of ctype.

	handle_ctypes_function(self, name, restype, argtypes, filename, lineno)
	A function declaration with the given return type and argument list.

	handle_ctypes_variable(self, name, ctype, filename, lineno)
	Any other non-static declaration.

Types are represented by instances of CtypesType. This is more easily
manipulated than a “real” ctypes type. There are subclasses for
CtypesPointer, CtypesArray, CtypesFunction, and so on; see the
module for details.

Each CtypesType class implements the visit method, which can be used,
Visitor pattern style, to traverse the type hierarchy. Call the visit
method of any type with an implementation of CtypesTypeVisitor: all
pointers, array bases, function parameters and return types are traversed
automatically (struct members are not, however).

This is useful when writing the contents of a struct or enum. Before writing
a type declaration for a struct type (which would consist only of the struct’s
tag), visit the type and handle the visit_struct method on the visitor
to print out the struct’s members first. Similarly for enums.

ctypesparser.py can not be run stand-alone. wrap.py provides a
straight-forward implementation that writes a module of ctypes wrappers. It
can filter the output based on the originating filename. See the module
docstring for usage and extension details.

Media manual

Domain knowledge

This tutorial http://dranger.com/ffmpeg/ffmpeg.html is a good intro for
building some domain knowledge. Bear in mind that the tutorial is rather old,
and some ffmpeg functions have become deprecated - but the basics are still
valid.

In the FFmpeg base code there is the ffplay.c player - a very good way to see
how things are managed. In particular, some newer FFmpeg functions are used,
while current pyglet media code still uses functions that have now been
deprecated.

Current code architecture

The overview of the media code is the following:

Source

Found in media/sources folder.

Source s represent data containing media
information. They can come from disk or be created in memory. A
Source ‘s responsibility is to read or generate audio
and/or video data and then provide it. Essentially, it’s a producer.

FFmpegStreamingSource

One implementation of the StreamingSource is the
FFmpegSource. It implements the Source base class
by calling FFmpeg functions wrapped by ctypes and found in
media/sources/ffmpeg_lib. They offer basic functionalities for handling media
streams, such as opening a file, reading stream info, reading a packet, and
decoding audio and video packets.

The FFmpegSource maintains two queues,
one for audio packets and one for video packets, with a pre-determined maximum
size. When the source is loaded, it will read packets from the stream and will
fill up the queues until one of them is full. It has then to stop because we
never know what type of packet we will get next from the stream. It could be a
packet of the same type as the filled up queue, in which case we would not be
able to store the additional packet.

Whenever a Player - a consumer of a source -
asks for audio data or a video frame, the
Source will pop the next packet from the
appropriate queue, decode the data, and return the result to the Player. If
this results in available space in both audio and video queues, it will read
additional packets until one of the queues is full again.

Player

Found in media/player.py

The Player is the main object that drives the
source. It maintains an internal sequence of sources or iterator of sources
that it can play sequentially. Its responsibilities are to play, pause and seek
into the source.

If the source contains audio, the Player will
instantiate an AudioPlayer by asking the AudioDriver to create an
appropriate AudioPlayer for the given platform. The AudioDriver is a
singleton created according to which drivers are available. Currently
supported sound drivers are: DirectSound, OpenAL, PulseAudio and XAudio2.
A silent audio driver that consumes, but does not play back any audio is also
available.

If the source contains video, the Player has a
get_texture() method returning the current
video frame.

The player has an internal master clock which is used to synchronize the
video and the audio. The audio synchronization is delegated to the
AudioPlayer. More info found below. The video synchronization is made by
asking the Source for the next video timestamp.
The Player then schedules on pyglet event loop a
call to its update_texture() with a delay
equals to the difference between the next video timestamp and the master clock
current time.

When update_texture() is called, we will
check if the actual master clock time is not too late compared to the video
timestamp. This could happen if the loop was very busy and the function could
not be called on time. In this case, the frame would be skipped until we find
a frame with a suitable timestamp for the current master clock time.

AudioPlayer

Found in media/drivers

The AudioPlayer is responsible for playing the audio data. It reads
from the Source, and can be started, stopped or cleared.

In order to accomplish this task, the audio player keeps a reference to the
AudioDriver singleton which provides access to the lower level functions
for the selected audio driver, and its Player, which it synchronizes with
and dispatches events to.

AudioPlayer s are bound to their source’s
AudioFormat. Once created, they can not play audio of
a different format.

AudioPlayer s will attempt to keep themselves in sync with their associated
Player . This is achieved by the _get_and_compensate_audio_data method.
The last 8 differences between their estimated audio time and their player’s
master clock will be stored for each read chunk of audio data.
If the average of this value exceeds a value of 30ms, the player will start to
correct itself by either dropping or duplicating a very small amount of
samples at a time, 12ms by default.
If any single measurement exceeds 280ms, an extreme desync that is noticeable
in context of the app is assumed. If the AudioPlayer is running behind the
master clock, all of this audio data is skipped and the measurements are reset.
When running ahead by more than 280ms, nothing is done but the standard
stretchin g of 12ms at a time.

play

When instructed to play, the AudioPlayer will give whatever instructions
are necessary to its audio backend in order to start playing itself.

To not run out of data, it will add itself into the PlayerWorkerThread of
its audio driver. This thread is typically responsible for asking sources for
audio data to prevent the main thread/event loop from locking up on I/O
operations. The PlayerWorkerThread will regularly call
work on each AudioPlayer.

This method may be called when already playing, and has no effect in that case.

stop

This method causes the AudioPlayer to stop playing its audio stream, or to
pause it. It may be restarted with play later-on, which will
cause it to continue from where it stopped.

The first thing this method should do is to remove itself from its driver’s
PlayerWorkerThread to ensure work won’t be called while
it stops.

This method may be called when already stopped, and has no effect in that case.

prefill_audio

This method is called from a Player whenever the AudioPlayer is about
to start playing and also before play is called for the
first time. The first batch of data is given from here, as backends using a
single audio buffer may play undefined data for a short amount of time before
the PlayerWorkerThread would load proper audio data in.

This method prefills the ideal amount of data for an AudioPlayer, available
in _buffered_data_ideal_size. By default this is given as 900ms of audio,
depending on the played source’s audio format.

work

This method is only called from a PlayerWorkerThread, though it may be
invoked through prefill_audio. As it is called from a
thread, implementing it error-free is difficult.

This method is responsible for refilling audio data if needed and often for
dispatching the on_eos() event.

Implementing this method comes with a lot of pitfalls. The following are free
to happen in other threads while the method is running:

	The player is paused or unpaused.
	Audio backends usually accept data for non-playing streams/sources/etc.,
so this is not too much of a problem. Realistically, this won’t happen, all
current implementations contain a call to
self.driver.worker.remove/add(self) snippet in their
play/stop implementations.
That call will return only once the PlayerWorkerThread is done with a
work cycle.

In order for these calls to be most reliable, remove should be the
first statement in a stop implementation and add
the last one in a play implementation, to ensure that
work will not be run after/will not start before player
attributes have been changed.

	The player is deleted.
	In order to combat this, self.driver.worker.remove(self) is used in all
implementations, ensuring delete calls will not interfere with the
work method.

	A native callback runs, changing the internal state of the AudioPlayer.
	See below; protecting some sections with a lock local to the
AudioPlayer. This lock should not be held around the call to
_get_and_compensate_audio_data, as that renders the entire step of
offloading the loading/decoding work into a PlayerWorkerThread
obsolete.

In pseudocode, the general way this method is implemented is:

def work():
 update_play_cursor()
 dispatch_media_events()
 if not source_exhausted:
 if play_cursor_too_close_to_write_cursor():
 get_and_submit_new_audio_data()
 if source_exhausted:
 update_play_cursor()
 else:
 return
 else:
 return
 if play_cursor > write_cursor and not has_underrun:
 has_underrun = True
 dispatch_on_eos()

If native callbacks are involved, running in yet another thread, the flow
tends to be different:

def work():
 update_play_cursor()
 dispatch_media_events()
 if not source_exhausted:
 if play_cursor_too_close_to_write_cursor():
 get_and_submit_new_audio_data()
 if has_underrun:
 if source_exhausted:
 dispatch_eon_eos()
 else:
 restart_player()
 has_underrun = False

def on_underrun():
 if source_exhausted:
 dispatch_on_eos()
 else:
 has_underrun = True

High care must be taken to protect appropiate sections (any variables and
buffers which get accessed by both callbacks and the work method) with a lock,
otherwise the method is open to extremely unlucky issues where the callback
is unscheduled in favor of the work method or vice versa, which may cause one
of the functions to assume/operate based on a now outdated state.

work won’t stop being called just because it dispatched on_eos. The
method must make sure its source did not run out of audio data before to only
dispatch this event once.

clear

This method may only be called when the AudioPlayer is not playing.
It causes it to discard all buffered data and reset itself to a clean initial
state.

delete

This method will cause the AudioPlayer to stop playing and delete all its
native resources. In contrast to clear, it may be called at
any time. It may be called multiple times and must make sure it won’t delete
already deleted resources.

AudioDriver

Found in media/drivers

The AudioDriver is a wrapper around the low-level sound driver available
on the platform. It’s a singleton. It can create an AudioPlayer
appropriate for the current AudioDriver.

The AudioDriver usually contains a PlayerWorkerThread responsible for
keeping each AudioPlayer that is playing filled with data.

The AudioDriver provides an AudioListener, which is used to place
a listener in the same space as each AudioPlayer, enabling positional
audio.

Normal operation of the Player

The client code instantiates a media player this way:

player = pyglet.media.Player()
source = pyglet.media.load(filename)
player.queue(source)
player.play()

When the client code runs player.play():

The Player will check if there is an audio track
on the media. If so it will instantiate an AudioPlayer appropriate for the
available sound driver on the platform. It will create an empty
Texture if the media contains video frames and will
schedule its update_texture() to be called
immediately. Finally it will start the master clock.

The AudioPlayer will start playing
as described above.

When the update_texture() method is called,
the next video timestamp will be checked with the master clock. We allow a
delay up to the frame duration. If the master clock is beyond that time, the
frame will be skipped. We will check the following frames for its timestamp
until we find the appropriate frame for the master clock time. We will set the
texture to the new video frame. We will
check for the next video frame timestamp and we will schedule a new call to
update_texture() with a delay equals to the
difference between the next video timestamps and the master clock time.

Helpful tools

I’ve found that using the binary ffprobe is a good way to explore the content
of a media file. Here’s a couple of things which might be
interesting and helpful:

ffprobe samples_v1.01\SampleVideo_320x240_1mb.3gp -show_frames

This will show information about each frame in the file. You can choose only
audio or only video frames by using the v flag for video and a for
audio.:

ffprobe samples_v1.01\SampleVideo_320x240_1mb.3gp -show_frames -select_streams v

You can also ask to see a subset of frame information this way:

ffprobe samples_v1.01\SampleVideo_320x240_1mb.3gp -show_frames
-select_streams v -show_entries frame=pkt_pts,pict_type

Finally, you can get a more compact view with the additional compact flag:

ffprobe samples_v1.01SampleVideo_320x240_1mb.3gp -show_frames
-select_streams v -show_entries frame=pkt_pts,pict_type -of compact

Convert video to mkv

ffmpeg -i <original_video> -c:v libx264 -preset slow -profile:v high -crf 18
-coder 1 -pix_fmt yuv420p -movflags +faststart -g 30 -bf 2 -c:a aac -b:a 384k
-profile:a aac_low <outputfilename.mkv>

Media logging manual

Workflows

User submitting debug info

Basically:

	get samples

	run a script

	submit that directory

This is detailed in tools/ffmpeg/readme_run_tests.txt.

Changing code in pyglet ffmpeg subsystem

Preparation like in readme_run_tests.txt, optionally install the library bokeh
(http://bokeh.pydata.org/en/latest/index.html) for visualization support.

The basic flow goes as:

	initialize the active session subsystem:
set environment variable pyglet_mp_samples_dir to the desired
samples_dir.

	record a session with the initial state:

configure.py new <session> [playlist]
run_test_suite.py

	Follow this workflow

while True:
 edit code
 commit to hg
 record a new session:
 configure.py new <new session> [playlist]
 run_test_suite.py
 look at the last session reports in samples_dir/session/reports
 especially 00_summary.txt, which shows defects stats and list condensed
 info about any sample failing;
 then to look more details look at the individual reports.
 compare with prev sessions if desired:
 compare.py <session1> <session2>

 render additional reports:
 report.py sample

 or visualize the data collected with:
 bokeh_timeline.py sample

 if results are as wanted, break
done, you may want to delete sessions for intermediate commits

It is possible to return to a previous session to request additional reports:

configure.py activate <session>
report.py ...

You can list the known sessions for the current samples_dir with:

configure.py list

Important

All this debugging machinery depends on a detailed and accurate capture of
media_player related state, currently in examples/media_player.py and
pyglet.media.player.

Modifications in those modules may require matching modifications in
pyglet/media/sources/instrumentation.py, and further propagation to other
modules.

Changing the debug code for pyglet ffmpeg

For initial debugging of debug code, where there are misspellings and trivial
errors to weed out, creating a new session for each run_test_suite.py run may
be inconvenient.

The flag dev_debug can be set to true in the session configuration file;
this will allow to rewrite the session.

Keep in mind that some raw data will be stale or misleading:

	The ones captured at session creation time (currently pyglet.info and
pyglet_changeset)

	The collected crashes info (new crashes will not be seen)

	If media_player.py crashes before doing any writing, the state recording
will be the previous recording.

The reports using that stale raw data will obviously report stale data.

So it is a good idea to switch to a normal workflow as soon as posible
(simply creating a new session and deleting the special session).

Session

If playlist_file is not specified, then all files in samples_dir, except
for the files with extension “.dbg”, “.htm”, “.html”, “.json”, “.log”, “.pkl”,
“.py”, “.txt” will make the implicit playlist; subdirectories of samples_dir
will not be explored.

If a playlist_file is specified, then it should contain one sample name
per line; a sanity check will be performed ensuring no blacklisted extension
is used, and that the sample exists in samples_dir.

Once the playlist_file is used in configure.py new a copy is writen to
the session raw data directory, and this copy will be the authoritative
playlist for the session; playlist_file can be deleted if desired.

Specifying a playlist is useful in development to restrict the tests to
samples relevant to the feature or issue under work.

The session name will be used to create a samples_dir subdir to store the test
results, hence it should be different of previous sessions names, and it must
not contain slashes, /, backslashes \ or characters forbidden in
directory names.

Active session

Most commands and subcommands target the currently active session.

A session becomes active when

	a configure.py new session [playlist] is issued

	a configure.py activate session is issued

The current implementation relies in two pieces of data to determine the
active session

	the environment variable pyglet_mp_samples_dir specifies samples_dir,
the directory where all the media samples reside. Under the current
paths schema is also where session data will be stored, one subdir per
session.

	a file activation.json in samples_dir storing the name for the
current active session.

Notice that the second precludes running two commands in parallel targeting
two different sessions in the same sample_dir.

The concept of active session plus the enforced path schema avoids the need to
provide paths at each command invocation, making for less errors, easier docs
and less typing.

Commands Summary

Primary commands

They are the ones normally used by developers

configure.py, mp.py : session creation, activation, protection, status
and list all.

run_test_suite.py : plays session’s samples, reports results.

report.py : produces the specified report for the specified sample.

timeline.py : translates the event stream to a stream of media_player
state, useful to pass to other software.

bokeh_timeline.py : visualization of data collected for the specified
sample.

Helper commands

Somehow an artifact of run_test_suite.py development, can help in testing
the debugging subsystem. run_test_suite.py is basically playmany.py +
retry_crashed.py + summarize.py. When trying to change run_test_suite.py
it is easier to first adapt the relevant helper.

playmany.py : plays active session samples, recording media_player state
along the play.

retry_crashed.py : plays again samples that have been seen always
crashing, hoping to get a recording with no crash. Motivated by early tests on
Ubuntu, where sometimes (but not always) a sample will crash the media_player.

summarize.py : using the raw data produced by the two previous commands
elaborates some reports, aiming to give an idea of how well the run was and
what samples should be investigated.

Data directory layout

samples_dir/ : directory where the samples live, also used to store
 sessions data
 <session name>/ : directory to store session info, one per session,
 named as the session.
 dbg/ : recording of media_player events captured while playing a
 sample, one per sample, named as sample.dbg; additional
 versioning info, other raw data collected.
 _crashes_light.pkl : pickle with info for retry crashed
 _pyglet_hg_revision.txt
 _pyglet_info.txt
 _samples_version.txt
 _session_playlist.txt
 <one .dbg file per sample in the session playlist, named sample.dbg>
 reports/ : human readable reports rendered from the raw data (.txt),
 visualizations (.html), intermediate data used by other
 tools(.pkl)
 configuration.json : session configuration info, mostly permissions
 activation.json : holds the name of current active session
 <sample> : one for each sample

A subdirectory of samples_dir is detected as a session dir if:

	it is a direct child of session dir

	it has a configuration.json file

policies:

	it should be hard to rewrite the .dbg files (recordings of media_player
states)

	think of dev analyzing data sent by an user.

Code Layout and conventions

The emerging separation of responsabilities goes like

Scripts (commands)

Structured as:

	uses if __main__ idiom to allow use as module (testing, sharing)

	sysargs_to_mainargs(): sys.argv translation to main params

	main(...)

	params validation and translation to adequate code entities (uses
module fs).

	translates exceptions to prints (uses module mpexceptions)

	short chain of instantiations / function calls to accomplish the
command goals, no logic or calculations here.

	other functions and classes: code specific to this command, delegates as
much as possible to modules.

When two scripts use some related but not identical functionality, these parts
can be moved to another module. Example: at first summarize had the code to
collect defects stats, later, when compare was writen, the module
extractors was added and the defect collection stats code moved to that
module.

If script B needs a subset of unchanged script A functionality, it imports A
and uses what it needs. Example is retry_crashed, will call into
playmany.

Because of the last point, some scripts will also be listed as modules.

Modules

buffered_logger

Accumulation of debug events while playing media_player, saves when
sample’s play ends

instrumentation

Defines the events that modify media_player state.
Defines which events are potential defects.
Gives the low level support to extract info from the recorded data.

For new code here, keep accepting and returning only data structures, no paths
or files.

fs

Path building for entities into a session directory should be delegated to
fs.PathServices.
Session’s creation, activation and management at start of fs.
Versions capture are handled at start of module fs.
Utility functions to load - save at the end of fs.

While there isn’t a Session object, in practice the code identifies and
provides access to a particular session data by handling a fs.PathServices
instance.

extractors

Analyzes a media_player recording to build specific info on behalf of
reporters. Uses instrumentation to get input data about the media_player
state sequence seen while playing a sample.
Defines object types to collect some specific info about a replay.

reports

Formats as text info captured / generated elsewhere.

mpexceptions

Defines exceptions generated by code in the ffmpeg debug subsystem.

Scripts that also acts as modules

timeline

Renders the media player’s debug info to a format more suitable to postprocess
in a spreadsheets or other software, particularly to get a data visualization.
(used by bokeh_timeline.py)

playmany

Produces media_player debug recordings.
Runs python scripts as subprocesses with a timeout (used by retry_crashed.py).

Commands detailed

bokeh_timeline.py

Usage:

bokeh_timeline.py sample

Renders media player’s internal state graphically using bokeh.

Arguments:

sample: sample to report

The output will be written to session’s output dir under
reports/sample.timeline.html.

Notice the plot can be zoomed live with the mouse wheel, but you must click
the button that looks as a distorted OP; it also does pan with mouse drag.

Example:

bokeh_timeline.py small.mp4

will write the output to report/small.mp4.timeline.html.

compare.py

Usage:

compare.py --reldir=relpath other_session

Builds a reports comparing the active session with other_session.

Outputs to samples_dir/relpath/comparison_<session>_<other_session>.txt.

configure.py

Usage:

configure.py subcommand [args]

Subcommands:

new session [playlist] : Creates a new session, sets it as the active one
activate session : activates a session
deactivate : no session will be active
protect [target]: forbids overwrite of session data
status : prints configuration for the active session
help [subcommand] : prints help for the given subcommand or topic
list : list all sessions associated the current samples_dir

Creates and manages pyglet media_player debug session configurations.

Most commands and subcommands need an environment variable
pyglet_mp_samples_dir to be set to the directory where the media samples
reside.

The configuration stores some values used when other commands are executed,
mostly protection status.

This command can be called both as configure.py or mp.py, they do the
same.

mp.py

alias for configure.py

playmany.py

Usage:

playmany.py

Uses media_player to play a sequence of samples and record debug info.

A session must be active, see command configure.py
If the active configuration has disallowed dbg overwrites it will do nothing.

If a playlist was provided at session creation, then only the samples in the
playlist will be played, otherwise all files in samples_dir.

report.py

Usage:

report.py sample report_name

Generates a report from the debugging info recorded while playing sample.

Arguments:

sample: sample to report
report_name: desired report, one of
 "anomalies": Start, end and interesting events
 "all": All data is exposed as text
 "counter": How many occurrences of each defect

The report will be written to session’s output dir under
reports/sample.report_name.txt.

Example:

report anomalies small.mp4

will write the report anomalies to report/small.mp4.anomalies.txt.

The authoritative list of reports available comes from
reports.available_reports

retry_crashed.py

Usage:

retry_crashed.py [--clean] [max_retries]

Inspects the raw data collected to get the list of samples that crashed the
last time they were played.
Then it replays those samples, recording new raw data for them.

The process is repeated until all samples has a recording with no crashes or
the still crashing samples were played max_tries times in this command
run.

Notice that only samples recorded as crashing in the last run are retried.

A configuration must be active, see command configure.py.

Besides the updated debug recordings, a state is build and saved:

total_retries: total retries attempted, including previous runs
sometimes_crashed: list of samples that crashed one time but later
 completed a play
always_crashed: list of samples that always crashed

Options:

--clean: discards crash data collected in a previous run
max_retries: defaults to 5

run_test_suite.py

Usage:

run_test_suite.py [samples_dir]

Plays media samples with the pyglet media_player, recording debug information
for each sample played and writing reports about the data captured.

Arguments:

samples_dir: directory with the media samples to play

If no samples_dir is provided the active session is the target.
If an explicit playlist was specified when creating the session, then only the
samples in the playlist will be played, otherwise all samples in samples_dir
will be played.

If sample_dir is provided, a session named testrun_00 (_01, _02,
… if that name was taken) will be created, with no explicit playlist, and
then the command operates as in the previous case.

Output files will be into:

samples_dir/session/dbg : binary capture of media_player events, other raw
 data captured
samples_dir/session/reports : human readable reports

Note

This script will refuse to overwrite an existing test_run results.

Output files will be into subdirectories:

samples_dir/test_run/dbg

Each sample will generate a sample.dbg file storing the sequence of
player debug events seen while playing the sample.
It is simply a pickle of a list of tuples, each tuple an event.
There are not meant for direct human use, but to run some analyzers to
render useful reports.

A crash_retries.pkl file, a pickle of
(total_retries, sometimes_crashed, still_crashing) <-> (int, set, set).

A pyglet.info captured at session creation to track hw & sw.

A pyglet hg revision captured at session creation.

samples_dir/test_run/reports

Human readable outputs, described in command summarize.py

Later a user can generate visualizations and additional reports that will
be stored in this directory

summarize.py

Usage:

summarize.py

Summarizes the session info collected with playmany and retry_crashes.

A configuration must be active, see command configure.py.

If a playlist was provided at session creation, then only the samples in the
playlist will be played, otherwise all files in samples_dir.

Produces human readable reports, constructed from the .dbg files.

Output will be in

samples_dir/test_run/reports

The files in that directory will be

00_summary.txt , which provides:

	basics defects stats over all samples

	a paragraph for each non perfect sample play with the count of each
anomaly observed

03_pyglet_info.txt , pyglet.info output giving OS, python version,
etc (as captured at session creation).

04_pyglet_hg_revision.txt , pyglet hg revision if running from a repo
clone, non writen if no repo (as captured at session creation).

sample_name.all.txt and sample_name.anomalies.txt for each sample that
played non perfect.

sample_name.all.txt has all info in the sample_name.dbg in human
readable form, that is, the sequence of player’s internal events along the
play.

sample_name.anomalies.txt is a reduced version of the .all.
variant: normal events are not shown, only anomalies.

timeline.py

Usage:

timeline.py sample [output_format]

Renders the media player’s debug info to a format more suitable to postprocess
in a spreadsheets or other software, particularly to get a data visualization.

See output details in the manual.

Arguments:

sample: sample to report
output_format : one of { "csv", "pkl"}, by default saves as .pkl (pickle)

The output will be written to session’s output dir under
reports/sample.timeline.[.pkl or .csv].

Example:

timeline.py small.mp4

will write the output to report/small.mp4.timeline.pkl.

Note

.csv sample is currently not implemented.

Samples

Samples should be small, at the moment I suggest an arbitrary 2MB 2 minutes
limit. The samples dir contains a _sources.txt which lists from where
each sample comes.

Caveat:

Samples are not ‘certified to be compliant with the specification’.

When possible, samples should be played with non ffmpeg software for
incidental confirmation of well formed

*.mp4, *.3gp played well with Windows Media Player for win7

*.ogv, *. webm played well with Firefox 54.0

*.flv, *.mkv played well with VLC Media player, but VLC uses
ffmpeg

Surely the samples set will be refined as time goes.

pycharm notes

For examples/video_ffmpeg module visibility and code completion, that
directory should be a ‘content root’ in pycharm settings | ‘project
structure’; as projects roots cannot nest, the pyglet working copy cannot be a
‘content root’, I removed it; I added also working_copy/pyglet as another
‘content root’ so pycharm plays well also en the library proper. This with
pycharm 2017.2

 Python Module Index

 a |
 c |
 e |
 f |
 g |
 i |
 m |
 s |
 t |
 w

 		 	

 		
 a	

 	
 	
 pyglet.app	

 		 	

 		
 c	

 	
 	
 pyglet.clock	

 	
 	
 pyglet.customtypes	

 		 	

 		
 e	

 	
 	
 pyglet.event	

 		 	

 		
 f	

 	[image: -]
 	
 pyglet.font	

 	
 	
 pyglet.font.user	

 		 	

 		
 g	

 	
 	
 pyglet.gl	

 	[image: -]
 	
 pyglet.graphics	

 	
 	
 pyglet.graphics.allocation	

 	
 	
 pyglet.graphics.shader	

 	
 	
 pyglet.graphics.vertexbuffer	

 	
 	
 pyglet.graphics.vertexdomain	

 	
 	
 pyglet.gui	

 		 	

 		
 i	

 	[image: -]
 	
 pyglet.image	

 	
 	
 pyglet.image.animation	

 	
 	
 pyglet.image.atlas	

 	
 	
 pyglet.image.buffer	

 	
 	
 pyglet.info	

 	
 	
 pyglet.input	

 		 	

 		
 m	

 	
 	
 pyglet.math	

 	[image: -]
 	
 pyglet.media	

 	
 	
 pyglet.media.exceptions	

 	
 	
 pyglet.media.synthesis	

 		 	

 		
 s	

 	
 	
 pyglet.shapes	

 	
 	
 pyglet.sprite	

 		 	

 		
 t	

 	[image: -]
 	
 pyglet.text	

 	
 	
 pyglet.text.caret	

 	
 	
 pyglet.text.document	

 	
 	
 pyglet.text.layout	

 		 	

 		
 w	

 	[image: -]
 	
 pyglet.window	

 	
 	
 pyglet.window.key	

 	
 	
 pyglet.window.mouse	

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

